XLM-R + NER
This model is a fine-tuned XLM-Roberta-base over the 40 languages proposed in XTREME from Wikiann. This is still an on-going work and the results will be updated everytime an improvement is reached.
The covered labels are:
LOC
ORG
PER
O
Metrics on evaluation set:
Average over the 40 languages
Number of documents: 262300
precision recall f1-score support
ORG 0.81 0.81 0.81 102452
PER 0.90 0.91 0.91 108978
LOC 0.86 0.89 0.87 121868
micro avg 0.86 0.87 0.87 333298
macro avg 0.86 0.87 0.87 333298
Afrikaans
Number of documents: 1000
precision recall f1-score support
ORG 0.89 0.88 0.88 582
PER 0.89 0.97 0.93 369
LOC 0.84 0.90 0.86 518
micro avg 0.87 0.91 0.89 1469
macro avg 0.87 0.91 0.89 1469
Arabic
Number of documents: 10000
precision recall f1-score support
ORG 0.83 0.84 0.84 3507
PER 0.90 0.91 0.91 3643
LOC 0.88 0.89 0.88 3604
micro avg 0.87 0.88 0.88 10754
macro avg 0.87 0.88 0.88 10754
Basque
Number of documents: 10000
precision recall f1-score support
LOC 0.88 0.93 0.91 5228
ORG 0.86 0.81 0.83 3654
PER 0.91 0.91 0.91 4072
micro avg 0.89 0.89 0.89 12954
macro avg 0.89 0.89 0.89 12954
Bengali
Number of documents: 1000
precision recall f1-score support
ORG 0.86 0.89 0.87 325
LOC 0.91 0.91 0.91 406
PER 0.96 0.95 0.95 364
micro avg 0.91 0.92 0.91 1095
macro avg 0.91 0.92 0.91 1095
Bulgarian
Number of documents: 1000
precision recall f1-score support
ORG 0.86 0.83 0.84 3661
PER 0.92 0.95 0.94 4006
LOC 0.92 0.95 0.94 6449
micro avg 0.91 0.92 0.91 14116
macro avg 0.91 0.92 0.91 14116
Burmese
Number of documents: 100
precision recall f1-score support
LOC 0.60 0.86 0.71 37
ORG 0.68 0.63 0.66 30
PER 0.44 0.44 0.44 36
micro avg 0.57 0.65 0.61 103
macro avg 0.57 0.65 0.60 103
Chinese
Number of documents: 10000
precision recall f1-score support
ORG 0.70 0.69 0.70 4022
LOC 0.76 0.81 0.78 3830
PER 0.84 0.84 0.84 3706
micro avg 0.76 0.78 0.77 11558
macro avg 0.76 0.78 0.77 11558
Dutch
Number of documents: 10000
precision recall f1-score support
ORG 0.87 0.87 0.87 3930
PER 0.95 0.95 0.95 4377
LOC 0.91 0.92 0.91 4813
micro avg 0.91 0.92 0.91 13120
macro avg 0.91 0.92 0.91 13120
English
Number of documents: 10000
precision recall f1-score support
LOC 0.83 0.84 0.84 4781
PER 0.89 0.90 0.89 4559
ORG 0.75 0.75 0.75 4633
micro avg 0.82 0.83 0.83 13973
macro avg 0.82 0.83 0.83 13973
Estonian
Number of documents: 10000
precision recall f1-score support
LOC 0.89 0.92 0.91 5654
ORG 0.85 0.85 0.85 3878
PER 0.94 0.94 0.94 4026
micro avg 0.90 0.91 0.90 13558
macro avg 0.90 0.91 0.90 13558
Finnish
Number of documents: 10000
precision recall f1-score support
ORG 0.84 0.83 0.84 4104
LOC 0.88 0.90 0.89 5307
PER 0.95 0.94 0.94 4519
micro avg 0.89 0.89 0.89 13930
macro avg 0.89 0.89 0.89 13930
French
Number of documents: 10000
precision recall f1-score support
LOC 0.90 0.89 0.89 4808
ORG 0.84 0.87 0.85 3876
PER 0.94 0.93 0.94 4249
micro avg 0.89 0.90 0.90 12933
macro avg 0.89 0.90 0.90 12933
Georgian
Number of documents: 10000
precision recall f1-score support
PER 0.90 0.91 0.90 3964
ORG 0.83 0.77 0.80 3757
LOC 0.82 0.88 0.85 4894
micro avg 0.84 0.86 0.85 12615
macro avg 0.84 0.86 0.85 12615
German
Number of documents: 10000
precision recall f1-score support
LOC 0.85 0.90 0.87 4939
PER 0.94 0.91 0.92 4452
ORG 0.79 0.78 0.79 4247
micro avg 0.86 0.86 0.86 13638
macro avg 0.86 0.86 0.86 13638
Greek
Number of documents: 10000
precision recall f1-score support
ORG 0.86 0.85 0.85 3771
LOC 0.88 0.91 0.90 4436
PER 0.91 0.93 0.92 3894
micro avg 0.88 0.90 0.89 12101
macro avg 0.88 0.90 0.89 12101
Hebrew
Number of documents: 10000
precision recall f1-score support
PER 0.87 0.88 0.87 4206
ORG 0.76 0.75 0.76 4190
LOC 0.85 0.85 0.85 4538
micro avg 0.83 0.83 0.83 12934
macro avg 0.82 0.83 0.83 12934
Hindi
Number of documents: 1000
precision recall f1-score support
ORG 0.78 0.81 0.79 362
LOC 0.83 0.85 0.84 422
PER 0.90 0.95 0.92 427
micro avg 0.84 0.87 0.85 1211
macro avg 0.84 0.87 0.85 1211
Hungarian
Number of documents: 10000
precision recall f1-score support
PER 0.95 0.95 0.95 4347
ORG 0.87 0.88 0.87 3988
LOC 0.90 0.92 0.91 5544
micro avg 0.91 0.92 0.91 13879
macro avg 0.91 0.92 0.91 13879
Indonesian
Number of documents: 10000
precision recall f1-score support
ORG 0.88 0.89 0.88 3735
LOC 0.93 0.95 0.94 3694
PER 0.93 0.93 0.93 3947
micro avg 0.91 0.92 0.92 11376
macro avg 0.91 0.92 0.92 11376
Italian
Number of documents: 10000
precision recall f1-score support
LOC 0.88 0.88 0.88 4592
ORG 0.86 0.86 0.86 4088
PER 0.96 0.96 0.96 4732
micro avg 0.90 0.90 0.90 13412
macro avg 0.90 0.90 0.90 13412
Japanese
Number of documents: 10000
precision recall f1-score support
ORG 0.62 0.61 0.62 4184
PER 0.76 0.81 0.78 3812
LOC 0.68 0.74 0.71 4281
micro avg 0.69 0.72 0.70 12277
macro avg 0.69 0.72 0.70 12277
Javanese
Number of documents: 100
precision recall f1-score support
ORG 0.79 0.80 0.80 46
PER 0.81 0.96 0.88 26
LOC 0.75 0.75 0.75 40
micro avg 0.78 0.82 0.80 112
macro avg 0.78 0.82 0.80 112
Kazakh
Number of documents: 1000
precision recall f1-score support
ORG 0.76 0.61 0.68 307
LOC 0.78 0.90 0.84 461
PER 0.87 0.91 0.89 367
micro avg 0.81 0.83 0.82 1135
macro avg 0.81 0.83 0.81 1135
Korean
Number of documents: 10000
precision recall f1-score support
LOC 0.86 0.89 0.88 5097
ORG 0.79 0.74 0.77 4218
PER 0.83 0.86 0.84 4014
micro avg 0.83 0.83 0.83 13329
macro avg 0.83 0.83 0.83 13329
Malay
Number of documents: 1000
precision recall f1-score support
ORG 0.87 0.89 0.88 368
PER 0.92 0.91 0.91 366
LOC 0.94 0.95 0.95 354
micro avg 0.91 0.92 0.91 1088
macro avg 0.91 0.92 0.91 1088
Malayalam
Number of documents: 1000
precision recall f1-score support
ORG 0.75 0.74 0.75 347
PER 0.84 0.89 0.86 417
LOC 0.74 0.75 0.75 391
micro avg 0.78 0.80 0.79 1155
macro avg 0.78 0.80 0.79 1155
Marathi
Number of documents: 1000
precision recall f1-score support
PER 0.89 0.94 0.92 394
LOC 0.82 0.84 0.83 457
ORG 0.84 0.78 0.81 339
micro avg 0.85 0.86 0.85 1190
macro avg 0.85 0.86 0.85 1190
Persian
Number of documents: 10000
precision recall f1-score support
PER 0.93 0.92 0.93 3540
LOC 0.93 0.93 0.93 3584
ORG 0.89 0.92 0.90 3370
micro avg 0.92 0.92 0.92 10494
macro avg 0.92 0.92 0.92 10494
Portuguese
Number of documents: 10000
precision recall f1-score support
LOC 0.90 0.91 0.91 4819
PER 0.94 0.92 0.93 4184
ORG 0.84 0.88 0.86 3670
micro avg 0.89 0.91 0.90 12673
macro avg 0.90 0.91 0.90 12673
Russian
Number of documents: 10000
precision recall f1-score support
PER 0.93 0.96 0.95 3574
LOC 0.87 0.89 0.88 4619
ORG 0.82 0.80 0.81 3858
micro avg 0.87 0.88 0.88 12051
macro avg 0.87 0.88 0.88 12051
Spanish
Number of documents: 10000
precision recall f1-score support
PER 0.95 0.93 0.94 3891
ORG 0.86 0.88 0.87 3709
LOC 0.89 0.91 0.90 4553
micro avg 0.90 0.91 0.90 12153
macro avg 0.90 0.91 0.90 12153
Swahili
Number of documents: 1000
precision recall f1-score support
ORG 0.82 0.85 0.83 349
PER 0.95 0.92 0.94 403
LOC 0.86 0.89 0.88 450
micro avg 0.88 0.89 0.88 1202
macro avg 0.88 0.89 0.88 1202
Tagalog
Number of documents: 1000
precision recall f1-score support
LOC 0.90 0.91 0.90 338
ORG 0.83 0.91 0.87 339
PER 0.96 0.93 0.95 350
micro avg 0.90 0.92 0.91 1027
macro avg 0.90 0.92 0.91 1027
Tamil
Number of documents: 1000
precision recall f1-score support
PER 0.90 0.92 0.91 392
ORG 0.77 0.76 0.76 370
LOC 0.78 0.81 0.79 421
micro avg 0.82 0.83 0.82 1183
macro avg 0.82 0.83 0.82 1183
Telugu
Number of documents: 1000
precision recall f1-score support
ORG 0.67 0.55 0.61 347
LOC 0.78 0.87 0.82 453
PER 0.73 0.86 0.79 393
micro avg 0.74 0.77 0.76 1193
macro avg 0.73 0.77 0.75 1193
Thai
Number of documents: 10000
precision recall f1-score support
LOC 0.63 0.76 0.69 3928
PER 0.78 0.83 0.80 6537
ORG 0.59 0.59 0.59 4257
micro avg 0.68 0.74 0.71 14722
macro avg 0.68 0.74 0.71 14722
Turkish
Number of documents: 10000
precision recall f1-score support
PER 0.94 0.94 0.94 4337
ORG 0.88 0.89 0.88 4094
LOC 0.90 0.92 0.91 4929
micro avg 0.90 0.92 0.91 13360
macro avg 0.91 0.92 0.91 13360
Urdu
Number of documents: 1000
precision recall f1-score support
LOC 0.90 0.95 0.93 352
PER 0.96 0.96 0.96 333
ORG 0.91 0.90 0.90 326
micro avg 0.92 0.94 0.93 1011
macro avg 0.92 0.94 0.93 1011
Vietnamese
Number of documents: 10000
precision recall f1-score support
ORG 0.86 0.87 0.86 3579
LOC 0.88 0.91 0.90 3811
PER 0.92 0.93 0.93 3717
micro avg 0.89 0.90 0.90 11107
macro avg 0.89 0.90 0.90 11107
Yoruba
Number of documents: 100
precision recall f1-score support
LOC 0.54 0.72 0.62 36
ORG 0.58 0.31 0.41 35
PER 0.77 1.00 0.87 36
micro avg 0.64 0.68 0.66 107
macro avg 0.63 0.68 0.63 107
Reproduce the results
Download and prepare the dataset from the XTREME repo. Next, from the root of the transformers repo run:
cd examples/ner
python run_tf_ner.py \
--data_dir . \
--labels ./labels.txt \
--model_name_or_path jplu/tf-xlm-roberta-base \
--output_dir model \
--max-seq-length 128 \
--num_train_epochs 2 \
--per_gpu_train_batch_size 16 \
--per_gpu_eval_batch_size 32 \
--do_train \
--do_eval \
--logging_dir logs \
--mode token-classification \
--evaluate_during_training \
--optimizer_name adamw
Usage with pipelines
from transformers import pipeline
nlp_ner = pipeline(
"ner",
model="jplu/tf-xlm-r-ner-40-lang",
tokenizer=(
'jplu/tf-xlm-r-ner-40-lang',
{"use_fast": True}),
framework="tf"
)
text_fr = "Barack Obama est né à Hawaï."
text_en = "Barack Obama was born in Hawaii."
text_es = "Barack Obama nació en Hawai."
text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。"
text_ar = "ولد باراك أوباما في هاواي."
nlp_ner(text_fr)
#Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}]
nlp_ner(text_en)
#Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}]
nlp_ner(test_es)
#Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}]
nlp_ner(test_zh)
#Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}]
nlp_ner(test_ar)
#Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}]
- Downloads last month
- 536