You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Welding Defects Detector

Supported Labels

['Defect', 'Welding Line', 'Workpiece', 'porosity']

How to use

from ultralytics import YOLO

# Load a pretrained YOLO model
model = YOLO(r'weights\welding_defects_yolo11x.pt')

# Run inference on 'image.png' with arguments
model.predict(
    'image.png',
    save=True,
    device=0
    )

Confusion matrix normalized

confusion_matrix_normalized.png

Labels

labels.jpg labels_correlogram.jpg

Results

results.png

Predict

val_batch0_labels.jpg val_batch0_pred.jpg

YOLO11x summary (fused): 464 layers, 56,831,644 parameters, 0 gradients, 194.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7/7 [00:06<00:00,  1.11it/s]
                   all        116        773      0.826      0.827      0.842      0.632
                Defect         56        131      0.552      0.427      0.445      0.202
          Welding Line        116        294      0.873      0.966      0.966      0.679
             Workpiece        110        307      0.941      0.987      0.992      0.938
              porosity         35         41      0.939      0.927      0.965       0.71
Speed: 0.5ms preprocess, 26.3ms inference, 0.0ms loss, 2.9ms postprocess per image

Others models...

https://huggingface.co/jparedesDS/

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including jparedesDS/welding-defects-detection