metadata
license: apache-2.0
base_model: distilroberta-base
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: platzi_nlp_model_roberta_similaritytext
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: datasetX
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7965686274509803
- name: F1
type: f1
value: 0.8482632541133455
platzi_nlp_model_roberta_similaritytext
This model is a fine-tuned version of distilroberta-base on the datasetX dataset. It achieves the following results on the evaluation set:
- Loss: 0.9276
- Accuracy: 0.7966
- F1: 0.8483
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.2258 | 1.09 | 500 | 0.9276 | 0.7966 | 0.8483 |
0.1733 | 2.18 | 1000 | 1.1506 | 0.8186 | 0.8754 |
0.1405 | 3.27 | 1500 | 1.2962 | 0.7990 | 0.8571 |
0.0545 | 4.36 | 2000 | 1.3339 | 0.8137 | 0.8685 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3