GemmaMerge-2B-Dare
GemmaMerge-2B-Dare is a merge of the following models using LazyMergekit:
Special thanks to Charles Goddard for the quick implementation!
π Evaluation
Coming Soon
𧩠Configuration
models:
- model: vicgalle/OpenHermes-Gemma-2B
parameters:
density: 0.53
weight: 0.5
- model: mlabonne/Gemmalpaca-2B
parameters:
density: 0.53
weight: 0.45
merge_method: dare_ties
base_model: vicgalle/OpenHermes-Gemma-2B
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/GemmaMerge-2B-Dare"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.