yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7836
  • Map: 0.5785
  • Map 50: 0.8356
  • Map 75: 0.6723
  • Map Small: -1.0
  • Map Medium: 0.5125
  • Map Large: 0.605
  • Mar 1: 0.4248
  • Mar 10: 0.7284
  • Mar 100: 0.7686
  • Mar Small: -1.0
  • Mar Medium: 0.6125
  • Mar Large: 0.7829
  • Map Banana: 0.448
  • Mar 100 Banana: 0.72
  • Map Orange: 0.6045
  • Mar 100 Orange: 0.7857
  • Map Apple: 0.6831
  • Mar 100 Apple: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 2.2392 0.0133 0.0374 0.0065 -1.0 0.0006 0.0174 0.0367 0.1159 0.2228 -1.0 0.075 0.2375 0.0033 0.295 0.0055 0.019 0.031 0.3543
No log 2.0 120 1.8045 0.0433 0.094 0.035 -1.0 0.0841 0.0463 0.1148 0.2667 0.4661 -1.0 0.3708 0.4806 0.0131 0.425 0.0335 0.419 0.0834 0.5543
No log 3.0 180 1.7343 0.0758 0.1809 0.0542 -1.0 0.0666 0.0765 0.1559 0.3357 0.473 -1.0 0.3708 0.4901 0.0802 0.39 0.0401 0.4548 0.107 0.5743
No log 4.0 240 1.5930 0.0667 0.1545 0.0477 -1.0 0.0345 0.0729 0.1339 0.3051 0.4819 -1.0 0.2167 0.5061 0.0823 0.4875 0.0565 0.3524 0.0614 0.6057
No log 5.0 300 1.4399 0.08 0.1519 0.0659 -1.0 0.0812 0.0899 0.1599 0.327 0.5297 -1.0 0.35 0.5466 0.0811 0.4925 0.0724 0.4595 0.0867 0.6371
No log 6.0 360 1.2057 0.1493 0.2472 0.1804 -1.0 0.1378 0.1618 0.2595 0.4663 0.6235 -1.0 0.3542 0.6502 0.0964 0.5825 0.1548 0.6167 0.1967 0.6714
No log 7.0 420 1.1930 0.2454 0.4068 0.2628 -1.0 0.1931 0.2652 0.2975 0.4886 0.6008 -1.0 0.3625 0.6243 0.1301 0.53 0.2107 0.5952 0.3953 0.6771
No log 8.0 480 1.1520 0.3021 0.5017 0.3603 -1.0 0.2696 0.3272 0.3091 0.5556 0.6268 -1.0 0.4083 0.6477 0.136 0.57 0.2458 0.5905 0.5244 0.72
1.4531 9.0 540 1.0371 0.3781 0.5892 0.4062 -1.0 0.3088 0.3964 0.3496 0.6028 0.6662 -1.0 0.3958 0.6901 0.2285 0.63 0.3607 0.6429 0.5451 0.7257
1.4531 10.0 600 1.0391 0.3811 0.6249 0.4312 -1.0 0.2525 0.4061 0.3532 0.6144 0.6606 -1.0 0.4167 0.6837 0.2649 0.625 0.2871 0.631 0.5912 0.7257
1.4531 11.0 660 0.9947 0.4314 0.6884 0.4616 -1.0 0.2102 0.4734 0.3681 0.6204 0.678 -1.0 0.4 0.7046 0.2683 0.6025 0.449 0.7 0.5768 0.7314
1.4531 12.0 720 1.0551 0.4382 0.7558 0.4724 -1.0 0.2711 0.4696 0.339 0.6118 0.6658 -1.0 0.475 0.6833 0.2939 0.6325 0.4729 0.6762 0.5477 0.6886
1.4531 13.0 780 0.9251 0.4752 0.7361 0.5321 -1.0 0.3079 0.5056 0.3823 0.6394 0.7055 -1.0 0.4667 0.7265 0.333 0.6375 0.4894 0.6905 0.6033 0.7886
1.4531 14.0 840 0.8957 0.4906 0.7363 0.5688 -1.0 0.34 0.5195 0.3813 0.6715 0.7187 -1.0 0.5208 0.7345 0.3125 0.66 0.52 0.7333 0.6394 0.7629
1.4531 15.0 900 0.9153 0.4978 0.7646 0.5708 -1.0 0.41 0.5297 0.401 0.6679 0.7131 -1.0 0.5708 0.7275 0.3437 0.6275 0.5364 0.7548 0.6133 0.7571
1.4531 16.0 960 0.8663 0.5276 0.7993 0.576 -1.0 0.3697 0.5634 0.4088 0.6738 0.7315 -1.0 0.525 0.7493 0.3965 0.675 0.5225 0.731 0.6638 0.7886
0.7981 17.0 1020 0.8745 0.5359 0.8136 0.5912 -1.0 0.3684 0.5684 0.4217 0.6903 0.7463 -1.0 0.5458 0.765 0.3881 0.68 0.5621 0.7762 0.6575 0.7829
0.7981 18.0 1080 0.8692 0.5375 0.814 0.6356 -1.0 0.4627 0.5653 0.4139 0.6979 0.7461 -1.0 0.6083 0.76 0.3799 0.6825 0.5793 0.7786 0.6532 0.7771
0.7981 19.0 1140 0.8285 0.5488 0.8236 0.6288 -1.0 0.4448 0.5802 0.4215 0.7103 0.7608 -1.0 0.6542 0.7699 0.4209 0.7175 0.574 0.7762 0.6513 0.7886
0.7981 20.0 1200 0.8036 0.5544 0.8123 0.6339 -1.0 0.4699 0.5869 0.4227 0.7209 0.7735 -1.0 0.625 0.7859 0.4012 0.7175 0.5806 0.8 0.6815 0.8029
0.7981 21.0 1260 0.8163 0.5546 0.8194 0.6187 -1.0 0.4976 0.5843 0.426 0.7134 0.7648 -1.0 0.6083 0.781 0.3824 0.6925 0.6011 0.8048 0.6803 0.7971
0.7981 22.0 1320 0.8323 0.5608 0.8266 0.6316 -1.0 0.5279 0.5848 0.4161 0.711 0.7573 -1.0 0.6083 0.7706 0.4091 0.6975 0.5902 0.7857 0.6831 0.7886
0.7981 23.0 1380 0.8178 0.5621 0.83 0.6621 -1.0 0.4861 0.5881 0.4194 0.7124 0.7578 -1.0 0.6125 0.7707 0.4356 0.71 0.5775 0.7833 0.6733 0.78
0.7981 24.0 1440 0.8000 0.5615 0.8331 0.66 -1.0 0.5107 0.5872 0.4135 0.7153 0.7615 -1.0 0.5917 0.7765 0.4259 0.725 0.5974 0.7738 0.6611 0.7857
0.5872 25.0 1500 0.7918 0.5691 0.8323 0.6611 -1.0 0.5043 0.5945 0.4271 0.7258 0.7671 -1.0 0.6 0.7824 0.4274 0.7175 0.5935 0.781 0.6863 0.8029
0.5872 26.0 1560 0.7879 0.5846 0.839 0.674 -1.0 0.4845 0.611 0.4234 0.7313 0.7656 -1.0 0.6208 0.7789 0.457 0.7125 0.6081 0.7786 0.6888 0.8057
0.5872 27.0 1620 0.7810 0.5793 0.8423 0.664 -1.0 0.485 0.6038 0.4285 0.7251 0.7736 -1.0 0.6167 0.7865 0.4498 0.735 0.6025 0.7857 0.6857 0.8
0.5872 28.0 1680 0.7838 0.5779 0.8359 0.6719 -1.0 0.5125 0.6044 0.424 0.7256 0.7666 -1.0 0.6125 0.7803 0.4494 0.725 0.6017 0.7833 0.6827 0.7914
0.5872 29.0 1740 0.7841 0.5776 0.8363 0.6718 -1.0 0.5125 0.604 0.4248 0.7276 0.7678 -1.0 0.6125 0.782 0.4479 0.72 0.6019 0.7833 0.6829 0.8
0.5872 30.0 1800 0.7836 0.5785 0.8356 0.6723 -1.0 0.5125 0.605 0.4248 0.7284 0.7686 -1.0 0.6125 0.7829 0.448 0.72 0.6045 0.7857 0.6831 0.8

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
22
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for joheras/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(30)
this model