Edit model card

image-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2066
  • Accuracy: 0.5813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0741 1.0 20 2.0298 0.2687
1.9068 2.0 40 1.7590 0.425
1.6486 3.0 60 1.5578 0.4688
1.4978 4.0 80 1.4362 0.5375
1.3643 5.0 100 1.3577 0.5312
1.2724 6.0 120 1.3503 0.5437
1.1678 7.0 140 1.2626 0.575
1.074 8.0 160 1.2404 0.5813
1.0216 9.0 180 1.2679 0.5375
0.943 10.0 200 1.1997 0.6
0.9146 11.0 220 1.1864 0.5938
0.8716 12.0 240 1.2533 0.5437
0.8739 13.0 260 1.1740 0.5625
0.8903 14.0 280 1.2089 0.55
0.8424 15.0 300 1.2022 0.5625

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for johansetiawan17/image-classification

Finetuned
(1670)
this model

Evaluation results