Brezn-7b-GGUF / README.md
johannhartmann's picture
Update README.md
f09f25c verified
---
tags:
- merge
- mergekit
- lazymergekit
- FelixChao/WestSeverus-7B-DPO-v2
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
- cognitivecomputations/openchat-3.5-0106-laser
base_model:
- FelixChao/WestSeverus-7B-DPO-v2
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
- cognitivecomputations/openchat-3.5-0106-laser
license: apache-2.0
language:
- de
---
# Brezn-7B
This is the GGUF quantized version of the dpo aligned merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2)
* [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser)
* [cognitivecomputations/openchat-3.5-0106-laser](https://huggingface.co/cognitivecomputations/openchat-3.5-0106-laser)
![image/png](https://huggingface.co/mayflowergmbh/Brezn-7b/resolve/main/pretzel.png)
## 💻 Usage
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
E.g.
```
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("mayflowergmbh/Brezn-7b")
tokenizer = AutoTokenizer.from_pretrained("mayflowergmbh/Brezn-7b")
messages = [
{"role": "user", "content": "Was ist dein Lieblingsgewürz??"},
{"role": "assistant", "content": "Nun, ich mag besonders gerne einen guten Spritzer frischen Zitronensaft. Er fügt genau die richtige Menge an würzigem Geschmack hinzu, egal was ich gerade in der Küche zubereite!"},
{"role": "user", "content": "Hast du Mayonnaise-Rezepte?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## mt-bench-de
```yaml
{
"first_turn": 7.6625,
"second_turn": 7.31875,
"categories": {
"writing": 8.75,
"roleplay": 8.5,
"reasoning": 6.1,
"math": 5.05,
"coding": 5.4,
"extraction": 7.975,
"stem": 9,
"humanities": 9.15
},
"average": 7.490625
}
```
## 🧩 Configuration
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: FelixChao/WestSeverus-7B-DPO-v2
parameters:
density: 0.60
weight: 0.30
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
density: 0.65
weight: 0.40
- model: cognitivecomputations/openchat-3.5-0106-laser
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```