|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: w11wo/indonesian-roberta-base-sentiment-classifier |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: results_final |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results_final |
|
|
|
This model is a fine-tuned version of [w11wo/indonesian-roberta-base-sentiment-classifier](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0692 |
|
- Accuracy: 0.8436 |
|
- F1 Macro: 0.8431 |
|
- F1 Weighted: 0.8433 |
|
- Precision Macro: 0.8432 |
|
- Recall Macro: 0.8434 |
|
- Precision Weighted: 0.8433 |
|
- Recall Weighted: 0.8436 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8.879626978799419e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | Precision Weighted | Recall Weighted | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:------------:|:------------------:|:---------------:| |
|
| 0.035 | 1.8182 | 500 | 1.0247 | 0.8327 | 0.8321 | 0.8323 | 0.8325 | 0.8325 | 0.8325 | 0.8327 | |
|
| 0.0829 | 3.6364 | 1000 | 1.0134 | 0.8273 | 0.8262 | 0.8263 | 0.8275 | 0.8270 | 0.8275 | 0.8273 | |
|
| 0.1858 | 5.4545 | 1500 | 1.0692 | 0.8436 | 0.8431 | 0.8433 | 0.8432 | 0.8434 | 0.8433 | 0.8436 | |
|
| 0.2844 | 7.2727 | 2000 | 0.9823 | 0.8255 | 0.8250 | 0.8251 | 0.8253 | 0.8253 | 0.8254 | 0.8255 | |
|
| 0.3299 | 9.0909 | 2500 | 0.9626 | 0.8255 | 0.8251 | 0.8252 | 0.8253 | 0.8253 | 0.8254 | 0.8255 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.21.1 |
|
|