results_final
This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3752
- Accuracy: 0.8933
- F1 Macro: 0.8932
- F1 Weighted: 0.8932
- Precision Macro: 0.8952
- Recall Macro: 0.8933
- Precision Weighted: 0.8953
- Recall Weighted: 0.8933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | Precision Weighted | Recall Weighted |
---|---|---|---|---|---|---|---|---|---|---|
0.3425 | 0.3436 | 100 | 0.3619 | 0.8898 | 0.8897 | 0.8897 | 0.8910 | 0.8898 | 0.8911 | 0.8898 |
0.4442 | 0.6873 | 200 | 0.3535 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.2777 | 1.0309 | 300 | 0.3620 | 0.8864 | 0.8863 | 0.8863 | 0.8878 | 0.8864 | 0.8878 | 0.8864 |
0.314 | 1.3746 | 400 | 0.3739 | 0.8881 | 0.8879 | 0.8879 | 0.8894 | 0.8881 | 0.8894 | 0.8881 |
0.3447 | 1.7182 | 500 | 0.3637 | 0.8881 | 0.8880 | 0.8880 | 0.8888 | 0.8881 | 0.8888 | 0.8881 |
0.3629 | 2.0619 | 600 | 0.3581 | 0.8916 | 0.8915 | 0.8915 | 0.8929 | 0.8916 | 0.8929 | 0.8916 |
0.3789 | 2.4055 | 700 | 0.3611 | 0.8898 | 0.8898 | 0.8898 | 0.8904 | 0.8898 | 0.8905 | 0.8898 |
0.3392 | 2.7491 | 800 | 0.3609 | 0.8898 | 0.8898 | 0.8898 | 0.8909 | 0.8899 | 0.8910 | 0.8898 |
0.3829 | 3.0928 | 900 | 0.3506 | 0.8881 | 0.8881 | 0.8881 | 0.8886 | 0.8881 | 0.8886 | 0.8881 |
0.2468 | 3.4364 | 1000 | 0.3752 | 0.8933 | 0.8932 | 0.8932 | 0.8952 | 0.8933 | 0.8953 | 0.8933 |
0.3509 | 3.7801 | 1100 | 0.3634 | 0.8864 | 0.8863 | 0.8863 | 0.8874 | 0.8864 | 0.8875 | 0.8864 |
0.3282 | 4.1237 | 1200 | 0.3657 | 0.8881 | 0.8880 | 0.8880 | 0.8886 | 0.8881 | 0.8886 | 0.8881 |
0.2847 | 4.4674 | 1300 | 0.3732 | 0.8881 | 0.8880 | 0.8880 | 0.8891 | 0.8881 | 0.8891 | 0.8881 |
0.3151 | 4.8110 | 1400 | 0.3674 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.3468 | 5.1546 | 1500 | 0.3666 | 0.8847 | 0.8846 | 0.8846 | 0.8853 | 0.8847 | 0.8853 | 0.8847 |
0.3638 | 5.4983 | 1600 | 0.3628 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.2822 | 5.8419 | 1700 | 0.3695 | 0.8864 | 0.8863 | 0.8863 | 0.8870 | 0.8864 | 0.8870 | 0.8864 |
0.334 | 6.1856 | 1800 | 0.3582 | 0.8898 | 0.8898 | 0.8898 | 0.8903 | 0.8898 | 0.8903 | 0.8898 |
0.3056 | 6.5292 | 1900 | 0.3608 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.2803 | 6.8729 | 2000 | 0.3663 | 0.8847 | 0.8846 | 0.8846 | 0.8853 | 0.8847 | 0.8853 | 0.8847 |
0.312 | 7.2165 | 2100 | 0.3665 | 0.8864 | 0.8863 | 0.8863 | 0.8872 | 0.8864 | 0.8872 | 0.8864 |
0.3847 | 7.5601 | 2200 | 0.3659 | 0.8847 | 0.8846 | 0.8846 | 0.8853 | 0.8847 | 0.8853 | 0.8847 |
0.324 | 7.9038 | 2300 | 0.3662 | 0.8847 | 0.8846 | 0.8846 | 0.8853 | 0.8847 | 0.8853 | 0.8847 |
0.3489 | 8.2474 | 2400 | 0.3643 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.3097 | 8.5911 | 2500 | 0.3647 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.2928 | 8.9347 | 2600 | 0.3653 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.365 | 9.2784 | 2700 | 0.3655 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.2417 | 9.6220 | 2800 | 0.3655 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
0.2933 | 9.9656 | 2900 | 0.3655 | 0.8864 | 0.8863 | 0.8863 | 0.8869 | 0.8864 | 0.8869 | 0.8864 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 6