johannawawi's picture
johannawawi/balanced_dataset_fine-tuning-java-indo-sentiment-analysist-3-class
495e1e8 verified
metadata
library_name: transformers
license: mit
base_model: w11wo/indonesian-roberta-base-sentiment-classifier
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2566
  • Accuracy: 0.9217
  • F1 Macro: 0.9216
  • F1 Weighted: 0.9216
  • Precision Macro: 0.9222
  • Recall Macro: 0.9217
  • Precision Weighted: 0.9222
  • Recall Weighted: 0.9217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Weighted Precision Macro Recall Macro Precision Weighted Recall Weighted
0.2227 1.0438 500 0.2626 0.9228 0.9227 0.9227 0.9236 0.9227 0.9236 0.9228
0.2623 2.0877 1000 0.2595 0.9217 0.9216 0.9216 0.9220 0.9217 0.9220 0.9217
0.2573 3.1315 1500 0.2587 0.9217 0.9216 0.9216 0.9222 0.9217 0.9222 0.9217
0.2262 4.1754 2000 0.2566 0.9217 0.9216 0.9216 0.9222 0.9217 0.9222 0.9217

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1