results_final
This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4292
- Accuracy: 0.8881
- F1 Macro: 0.8880
- F1 Weighted: 0.8880
- Precision Macro: 0.8896
- Recall Macro: 0.8881
- Precision Weighted: 0.8895
- Recall Weighted: 0.8881
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | Precision Weighted | Recall Weighted |
---|---|---|---|---|---|---|---|---|---|---|
0.2316 | 0.3436 | 100 | 0.4071 | 0.8864 | 0.8862 | 0.8862 | 0.8869 | 0.8864 | 0.8870 | 0.8864 |
0.2298 | 0.6873 | 200 | 0.4028 | 0.8864 | 0.8863 | 0.8863 | 0.8867 | 0.8864 | 0.8867 | 0.8864 |
0.1311 | 1.0309 | 300 | 0.4144 | 0.8847 | 0.8846 | 0.8846 | 0.8852 | 0.8847 | 0.8852 | 0.8847 |
0.159 | 1.3746 | 400 | 0.4292 | 0.8881 | 0.8880 | 0.8880 | 0.8896 | 0.8881 | 0.8895 | 0.8881 |
0.1957 | 1.7182 | 500 | 0.4283 | 0.8830 | 0.8828 | 0.8829 | 0.8835 | 0.8829 | 0.8836 | 0.8830 |
0.228 | 2.0619 | 600 | 0.4153 | 0.8778 | 0.8778 | 0.8779 | 0.8783 | 0.8778 | 0.8783 | 0.8778 |
0.2248 | 2.4055 | 700 | 0.4242 | 0.8830 | 0.8828 | 0.8828 | 0.8833 | 0.8829 | 0.8833 | 0.8830 |
0.1733 | 2.7491 | 800 | 0.4239 | 0.8795 | 0.8795 | 0.8795 | 0.8803 | 0.8795 | 0.8803 | 0.8795 |
0.2314 | 3.0928 | 900 | 0.4166 | 0.8812 | 0.8811 | 0.8811 | 0.8813 | 0.8812 | 0.8813 | 0.8812 |
0.1691 | 3.4364 | 1000 | 0.4472 | 0.8744 | 0.8741 | 0.8741 | 0.8757 | 0.8743 | 0.8757 | 0.8744 |
0.2671 | 3.7801 | 1100 | 0.4273 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
0.2643 | 4.1237 | 1200 | 0.4317 | 0.8812 | 0.8811 | 0.8811 | 0.8815 | 0.8812 | 0.8815 | 0.8812 |
0.202 | 4.4674 | 1300 | 0.4440 | 0.8847 | 0.8846 | 0.8846 | 0.8852 | 0.8846 | 0.8852 | 0.8847 |
0.2538 | 4.8110 | 1400 | 0.4397 | 0.8812 | 0.8812 | 0.8812 | 0.8816 | 0.8812 | 0.8816 | 0.8812 |
0.2662 | 5.1546 | 1500 | 0.4364 | 0.8847 | 0.8846 | 0.8846 | 0.8852 | 0.8846 | 0.8852 | 0.8847 |
0.2655 | 5.4983 | 1600 | 0.4298 | 0.8812 | 0.8812 | 0.8812 | 0.8816 | 0.8812 | 0.8816 | 0.8812 |
0.1933 | 5.8419 | 1700 | 0.4422 | 0.8847 | 0.8845 | 0.8845 | 0.8854 | 0.8846 | 0.8854 | 0.8847 |
0.2289 | 6.1856 | 1800 | 0.4282 | 0.8778 | 0.8776 | 0.8777 | 0.8778 | 0.8778 | 0.8778 | 0.8778 |
0.2298 | 6.5292 | 1900 | 0.4313 | 0.8795 | 0.8794 | 0.8794 | 0.8798 | 0.8795 | 0.8798 | 0.8795 |
0.2008 | 6.8729 | 2000 | 0.4344 | 0.8812 | 0.8811 | 0.8812 | 0.8816 | 0.8812 | 0.8817 | 0.8812 |
0.2107 | 7.2165 | 2100 | 0.4354 | 0.8830 | 0.8829 | 0.8829 | 0.8833 | 0.8829 | 0.8834 | 0.8830 |
0.2505 | 7.5601 | 2200 | 0.4353 | 0.8830 | 0.8829 | 0.8829 | 0.8833 | 0.8829 | 0.8834 | 0.8830 |
0.2134 | 7.9038 | 2300 | 0.4361 | 0.8830 | 0.8829 | 0.8829 | 0.8833 | 0.8829 | 0.8834 | 0.8830 |
0.2613 | 8.2474 | 2400 | 0.4344 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
0.2128 | 8.5911 | 2500 | 0.4350 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
0.212 | 8.9347 | 2600 | 0.4356 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
0.2379 | 9.2784 | 2700 | 0.4359 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
0.1471 | 9.6220 | 2800 | 0.4358 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
0.1781 | 9.9656 | 2900 | 0.4359 | 0.8830 | 0.8828 | 0.8829 | 0.8832 | 0.8829 | 0.8832 | 0.8830 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 4