distilbert-ner-cv-fine-tuned
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1041
- Precision: 0.9435
- Recall: 0.9401
- F1: 0.9418
- Accuracy: 0.9435
- Macro F1: 0.9246
- Weighted F1: 0.9417
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Macro F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|---|
0.1065 | 1.0 | 307 | 0.0941 | 0.9288 | 0.9296 | 0.9292 | 0.9288 | 0.9103 | 0.9292 |
0.08 | 2.0 | 614 | 0.0898 | 0.9347 | 0.9228 | 0.9287 | 0.9347 | 0.9038 | 0.9286 |
0.0625 | 3.0 | 921 | 0.0849 | 0.9375 | 0.9392 | 0.9383 | 0.9375 | 0.9203 | 0.9384 |
0.0533 | 4.0 | 1228 | 0.0926 | 0.9384 | 0.9328 | 0.9356 | 0.9384 | 0.9189 | 0.9353 |
0.0439 | 5.0 | 1535 | 0.0941 | 0.9414 | 0.9405 | 0.9410 | 0.9414 | 0.9251 | 0.9408 |
0.0418 | 6.0 | 1842 | 0.0931 | 0.9365 | 0.9365 | 0.9365 | 0.9365 | 0.9164 | 0.9365 |
0.0326 | 7.0 | 2149 | 0.1041 | 0.9435 | 0.9401 | 0.9418 | 0.9435 | 0.9246 | 0.9417 |
0.0311 | 8.0 | 2456 | 0.1025 | 0.9443 | 0.9387 | 0.9415 | 0.9443 | 0.9257 | 0.9414 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support