|
from __future__ import annotations |
|
|
|
import math |
|
import warnings |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from accelerate.utils.imports import is_xpu_available |
|
from torch import svd_lowrank |
|
from transformers.pytorch_utils import Conv1D |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
from peft.utils.integrations import ( |
|
dequantize_module_weight, |
|
gather_params_ctx, |
|
get_bnb_param_type, |
|
skip_init_on_device, |
|
) |
|
from peft.utils.other import transpose |
|
from peft.tuners.lora import LoraLayer |
|
|
|
class Linear(nn.Module, LoraLayer): |
|
|
|
def __init__( |
|
self, |
|
base_layer, |
|
adapter_name: str, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
fan_in_fan_out: bool = False, |
|
is_target_conv_1d_layer: bool = False, |
|
init_lora_weights: Union[bool, str] = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
lora_bias: bool = False, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer, **kwargs) |
|
self.fan_in_fan_out = fan_in_fan_out |
|
|
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
lora_bias=lora_bias, |
|
) |
|
self.is_target_conv_1d_layer = is_target_conv_1d_layer |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`list[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter in self.lora_A.keys(): |
|
base_layer = self.get_base_layer() |
|
if safe_merge: |
|
|
|
|
|
orig_weights = base_layer.weight.data.clone() |
|
delta_weight = self.get_delta_weight(active_adapter) |
|
if not self.use_dora[active_adapter]: |
|
orig_weights += delta_weight |
|
else: |
|
|
|
|
|
weight_norm = ( |
|
self.lora_magnitude_vector[active_adapter] |
|
.get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1) |
|
.detach() |
|
) |
|
|
|
|
|
|
|
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) |
|
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm |
|
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) |
|
orig_weights = dora_factor * (orig_weights + delta_weight) |
|
|
|
if not torch.isfinite(orig_weights).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
|
|
base_layer.weight.data = orig_weights |
|
|
|
if self.lora_bias[active_adapter]: |
|
new_bias = base_layer.bias + self.lora_B[active_adapter].bias |
|
if not torch.isfinite(new_bias).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
base_layer.bias.data = new_bias |
|
|
|
else: |
|
delta_weight = self.get_delta_weight(active_adapter) |
|
if not self.use_dora[active_adapter]: |
|
base_layer.weight.data += delta_weight |
|
else: |
|
|
|
|
|
weight_norm = ( |
|
self.lora_magnitude_vector[active_adapter] |
|
.get_weight_norm( |
|
base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1 |
|
) |
|
.detach() |
|
) |
|
|
|
|
|
|
|
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) |
|
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm |
|
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) |
|
new_weight = dora_factor * (base_layer.weight.data + delta_weight) |
|
base_layer.weight.data = new_weight |
|
|
|
if self.lora_bias[active_adapter]: |
|
base_layer.bias.data += self.lora_B[active_adapter].bias |
|
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter in self.lora_A.keys(): |
|
weight = self.get_base_layer().weight |
|
delta_weight = self.get_delta_weight(active_adapter) |
|
if not self.use_dora[active_adapter]: |
|
weight.data -= delta_weight |
|
else: |
|
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") |
|
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm |
|
weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight |
|
weight.data = weight_orig |
|
|
|
if self.lora_bias[active_adapter]: |
|
self.get_base_layer().bias.data -= self.lora_B[active_adapter].bias |
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
""" |
|
Compute the delta weight for the given adapter. |
|
|
|
Args: |
|
adapter (str): |
|
The name of the adapter for which the delta weight should be computed. |
|
""" |
|
device = self.lora_B[adapter].weight.device |
|
dtype = self.lora_B[adapter].weight.dtype |
|
|
|
|
|
|
|
|
|
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) |
|
|
|
weight_A = self.lora_A[adapter].weight |
|
weight_B = self.lora_B[adapter].weight |
|
|
|
if cast_to_fp32: |
|
weight_A = weight_A.float() |
|
weight_B = weight_B.float() |
|
|
|
output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] |
|
|
|
if cast_to_fp32: |
|
output_tensor = output_tensor.to(dtype=dtype) |
|
|
|
|
|
self.lora_A[adapter].weight.data = weight_A.to(dtype) |
|
self.lora_B[adapter].weight.data = weight_B.to(dtype) |
|
|
|
return output_tensor |
|
|
|
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: |
|
self._check_forward_args(x, *args, **kwargs) |
|
adapter_names = kwargs.pop("adapter_names", None) |
|
|
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif adapter_names is not None: |
|
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
torch_result_dtype = result.dtype |
|
|
|
lora_A_keys = self.lora_A.keys() |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in lora_A_keys: |
|
continue |
|
|
|
lora_A = self.lora_A[active_adapter]['default'] |
|
lora_B = self.lora_B[active_adapter]['default'] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
x = self._cast_input_dtype(x, lora_A.weight.dtype) |
|
|
|
if not self.use_dora[active_adapter]: |
|
result = result + lora_B(lora_A(dropout(x))) * scaling |
|
else: |
|
if isinstance(dropout, nn.Identity) or not self.training: |
|
base_result = result |
|
else: |
|
x = dropout(x) |
|
base_result = None |
|
|
|
result = result + self.lora_magnitude_vector[active_adapter]( |
|
x, |
|
lora_A=lora_A, |
|
lora_B=lora_B, |
|
scaling=scaling, |
|
base_layer=self.get_base_layer(), |
|
base_result=base_result, |
|
) |
|
|
|
result = result.to(torch_result_dtype) |
|
|
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
|
|
def update_layer( |
|
self, |
|
adapter_name, |
|
r, |
|
lora_alpha, |
|
lora_dropout, |
|
init_lora_weights, |
|
use_rslora, |
|
use_dora: bool = False, |
|
lora_bias: bool = False, |
|
): |
|
|
|
if r <= 0: |
|
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") |
|
|
|
self.r[adapter_name] = r |
|
self.lora_alpha[adapter_name] = lora_alpha |
|
if lora_dropout > 0.0: |
|
lora_dropout_layer = nn.Dropout(p=lora_dropout) |
|
else: |
|
lora_dropout_layer = nn.Identity() |
|
|
|
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) |
|
|
|
self.lora_A[adapter_name] = nn.ModuleDict({ |
|
"default": nn.Linear(self.in_features, r, bias=False), |
|
"second_adapter": nn.Linear(self.in_features, r, bias=False) |
|
}) |
|
self.lora_B[adapter_name] = nn.ModuleDict({ |
|
"default": nn.Linear(r, self.out_features, bias=lora_bias), |
|
"second_adapter": nn.Linear(r, self.out_features, bias=lora_bias) |
|
}) |
|
self.lora_bias[adapter_name] = lora_bias |
|
|
|
if use_rslora: |
|
self.scaling[adapter_name] = lora_alpha / math.sqrt(r) |
|
else: |
|
self.scaling[adapter_name] = lora_alpha / r |
|
|
|
self.reset_lora_parameters(adapter_name, init_lora_weights) |
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
self.use_dora[adapter_name] = False |
|
self.set_adapter(self.active_adapters) |
|
|
|
def reset_lora_parameters(self, adapter_name, init_lora_weights): |
|
if init_lora_weights is False: |
|
return |
|
if init_lora_weights is True: |
|
|
|
|
|
nn.init.kaiming_uniform_(self.lora_A[adapter_name]['default'].weight, a=math.sqrt(5)) |
|
nn.init.kaiming_uniform_(self.lora_A[adapter_name]['second_adapter'].weight, a=math.sqrt(5)) |
|
elif init_lora_weights.lower() == "gaussian": |
|
nn.init.normal_(self.lora_A[adapter_name]['default'].weight, std=1 / self.r[adapter_name]) |
|
nn.init.normal_(self.lora_A[adapter_name]['second_adapter'].weight, std=1 / self.r[adapter_name]) |
|
else: |
|
raise ValueError(f"Unknown initialization {init_lora_weights=}") |
|
nn.init.zeros_(self.lora_B[adapter_name]['default'].weight) |
|
nn.init.zeros_(self.lora_B[adapter_name]['second_adapter'].weight) |
|
if self.lora_bias[adapter_name]: |
|
nn.init.zeros_(self.lora_B[adapter_name]['default'].bias) |
|
nn.init.zeros_(self.lora_B[adapter_name]['second_adapter'].bias) |