File size: 14,024 Bytes
85f64e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from __future__ import annotations

import math
import warnings
from typing import Any, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate.utils.imports import is_xpu_available
from torch import svd_lowrank
from transformers.pytorch_utils import Conv1D

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.integrations import (
    dequantize_module_weight,
    gather_params_ctx,
    get_bnb_param_type,
    skip_init_on_device,
)
from peft.utils.other import transpose
from peft.tuners.lora import LoraLayer

class Linear(nn.Module, LoraLayer):
    # Lora implemented in a dense layer
    def __init__(
        self,
        base_layer,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        is_target_conv_1d_layer: bool = False,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        lora_bias: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        LoraLayer.__init__(self, base_layer, **kwargs)
        self.fan_in_fan_out = fan_in_fan_out

        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
            lora_bias=lora_bias,
        )
        self.is_target_conv_1d_layer = is_target_conv_1d_layer

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.lora_A.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        orig_weights += delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = (
                            self.lora_magnitude_vector[active_adapter]
                            .get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1)
                            .detach()
                        )
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
                        dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
                        orig_weights = dora_factor * (orig_weights + delta_weight)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights

                    if self.lora_bias[active_adapter]:
                        new_bias = base_layer.bias + self.lora_B[active_adapter].bias
                        if not torch.isfinite(new_bias).all():
                            raise ValueError(
                                f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                            )
                        base_layer.bias.data = new_bias

                else:
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        base_layer.weight.data += delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = (
                            self.lora_magnitude_vector[active_adapter]
                            .get_weight_norm(
                                base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1
                            )
                            .detach()
                        )
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
                        dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
                        new_weight = dora_factor * (base_layer.weight.data + delta_weight)
                        base_layer.weight.data = new_weight

                    if self.lora_bias[active_adapter]:
                        base_layer.bias.data += self.lora_B[active_adapter].bias

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.lora_A.keys():
                weight = self.get_base_layer().weight
                delta_weight = self.get_delta_weight(active_adapter)
                if not self.use_dora[active_adapter]:
                    weight.data -= delta_weight
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
                    weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
                    weight.data = weight_orig

                if self.lora_bias[active_adapter]:
                    self.get_base_layer().bias.data -= self.lora_B[active_adapter].bias

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        device = self.lora_B[adapter].weight.device
        dtype = self.lora_B[adapter].weight.dtype

        # In case users wants to merge the adapter weights that are in
        # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # (b)float16 because some CPUs have slow bf16/fp16 matmuls.
        cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16)

        weight_A = self.lora_A[adapter].weight
        weight_B = self.lora_B[adapter].weight

        if cast_to_fp32:
            weight_A = weight_A.float()
            weight_B = weight_B.float()

        output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter]

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            self.lora_A[adapter].weight.data = weight_A.to(dtype)
            self.lora_B[adapter].weight.data = weight_B.to(dtype)

        return output_tensor

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype

            lora_A_keys = self.lora_A.keys()
            for active_adapter in self.active_adapters:
                if active_adapter not in lora_A_keys:
                    continue

                lora_A = self.lora_A[active_adapter]['default']
                lora_B = self.lora_B[active_adapter]['default']
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = self._cast_input_dtype(x, lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    if isinstance(dropout, nn.Identity) or not self.training:
                        base_result = result
                    else:
                        x = dropout(x)
                        base_result = None

                    result = result + self.lora_magnitude_vector[active_adapter](
                        x,
                        lora_A=lora_A,
                        lora_B=lora_B,
                        scaling=scaling,
                        base_layer=self.get_base_layer(),
                        base_result=base_result,
                    )

            result = result.to(torch_result_dtype)

        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep


    def update_layer(
        self,
        adapter_name,
        r,
        lora_alpha,
        lora_dropout,
        init_lora_weights,
        use_rslora,
        use_dora: bool = False,
        lora_bias: bool = False,
    ):
        # This code works for linear layers, override for other layer types
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
        # Actual trainable parameters
        self.lora_A[adapter_name] = nn.ModuleDict({
            "default": nn.Linear(self.in_features, r, bias=False),
            "second_adapter": nn.Linear(self.in_features, r, bias=False)
        })
        self.lora_B[adapter_name] = nn.ModuleDict({
            "default": nn.Linear(r, self.out_features, bias=lora_bias),
            "second_adapter": nn.Linear(r, self.out_features, bias=lora_bias)
        })
        self.lora_bias[adapter_name] = lora_bias

        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        self.reset_lora_parameters(adapter_name, init_lora_weights)
        self._move_adapter_to_device_of_base_layer(adapter_name)
        self.use_dora[adapter_name] = False
        self.set_adapter(self.active_adapters)

    def reset_lora_parameters(self, adapter_name, init_lora_weights):
        if init_lora_weights is False:
            return
        if init_lora_weights is True:
            # initialize A the same way as the default for nn.Linear and B to zero
            # https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
            nn.init.kaiming_uniform_(self.lora_A[adapter_name]['default'].weight, a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.lora_A[adapter_name]['second_adapter'].weight, a=math.sqrt(5))
        elif init_lora_weights.lower() == "gaussian":
            nn.init.normal_(self.lora_A[adapter_name]['default'].weight, std=1 / self.r[adapter_name])
            nn.init.normal_(self.lora_A[adapter_name]['second_adapter'].weight, std=1 / self.r[adapter_name])
        else:
            raise ValueError(f"Unknown initialization {init_lora_weights=}")
        nn.init.zeros_(self.lora_B[adapter_name]['default'].weight)
        nn.init.zeros_(self.lora_B[adapter_name]['second_adapter'].weight)
        if self.lora_bias[adapter_name]:
            nn.init.zeros_(self.lora_B[adapter_name]['default'].bias)
            nn.init.zeros_(self.lora_B[adapter_name]['second_adapter'].bias)