DeepProtT5-Fluorescence / modeling_t5_regression.py
jiaxie's picture
Create modeling_t5_regression.py
68ea7a5 verified
from transformers import T5EncoderModel, T5Config, PreTrainedModel
import torch.nn as nn
import torch
class T5RegressionModel(PreTrainedModel):
config_class = T5Config
def __init__(self, config, d_model=None):
super().__init__(config)
self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
hidden_dim = d_model if d_model is not None else config.d_model
self.regression_head = nn.Linear(hidden_dim, 1)
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
hidden_states = encoder_outputs.last_hidden_state
pooled_output = hidden_states[:, -1, :]
logits = self.regression_head(pooled_output).squeeze(-1)
loss = None
if labels is not None:
labels = labels.float()
loss = nn.MSELoss()(logits, labels)
return {"loss": loss, "logits": logits}