Create modeling_t5_regression.py
Browse files- modeling_t5_regression.py +25 -0
modeling_t5_regression.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5EncoderModel, T5Config, PreTrainedModel
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class T5RegressionModel(PreTrainedModel):
|
6 |
+
config_class = T5Config
|
7 |
+
|
8 |
+
def __init__(self, config, d_model=None):
|
9 |
+
super().__init__(config)
|
10 |
+
self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
|
11 |
+
hidden_dim = d_model if d_model is not None else config.d_model
|
12 |
+
self.regression_head = nn.Linear(hidden_dim, 1)
|
13 |
+
|
14 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
15 |
+
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
16 |
+
hidden_states = encoder_outputs.last_hidden_state
|
17 |
+
pooled_output = hidden_states[:, -1, :]
|
18 |
+
logits = self.regression_head(pooled_output).squeeze(-1)
|
19 |
+
|
20 |
+
loss = None
|
21 |
+
if labels is not None:
|
22 |
+
labels = labels.float()
|
23 |
+
loss = nn.MSELoss()(logits, labels)
|
24 |
+
|
25 |
+
return {"loss": loss, "logits": logits}
|