jiaxie commited on
Commit
68ea7a5
·
verified ·
1 Parent(s): 0ff7b8e

Create modeling_t5_regression.py

Browse files
Files changed (1) hide show
  1. modeling_t5_regression.py +25 -0
modeling_t5_regression.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import T5EncoderModel, T5Config, PreTrainedModel
2
+ import torch.nn as nn
3
+ import torch
4
+
5
+ class T5RegressionModel(PreTrainedModel):
6
+ config_class = T5Config
7
+
8
+ def __init__(self, config, d_model=None):
9
+ super().__init__(config)
10
+ self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
11
+ hidden_dim = d_model if d_model is not None else config.d_model
12
+ self.regression_head = nn.Linear(hidden_dim, 1)
13
+
14
+ def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
15
+ encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
16
+ hidden_states = encoder_outputs.last_hidden_state
17
+ pooled_output = hidden_states[:, -1, :]
18
+ logits = self.regression_head(pooled_output).squeeze(-1)
19
+
20
+ loss = None
21
+ if labels is not None:
22
+ labels = labels.float()
23
+ loss = nn.MSELoss()(logits, labels)
24
+
25
+ return {"loss": loss, "logits": logits}