Amazon-Beauty-Product-Reviews-distilBERT-base for Sentiment Analysis

Table of Contents

Model Details

Model Description

This model is a fine-tuned version of distilbert-base-uncased on a balanced subset of Amazon beauty reviews dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.5171
  • Accuracy: 0.7862
  • Precision: 0.7876
  • Recall: 0.7860
  • F1: 0.7867

Developer Information

  • Developed by: Jiali Han
  • Model Type: Text Classification
  • Language(s): English
  • License: Apache-2.0
  • Parent Model: For more details about DistilBERT, please check out this model card.
  • Resources for more information:

Uses

Direct Application

This model can be used for sentiment analysis on Amazon beauty product reviews.

Misuse and Out-of-scope Use

The model should not be used to create hostile or alienating environments for people intentionally. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.

Risks, Limitations and Biases

The model may produce biased predictions, particularly impacting underrepresented groups.

Users should evaluate the model’s risks for their specific use cases.

For further bias evaluation, consider datasets such as:

Training and Evaluation

Training Data

The author uses the Amazon beauty reviews dataset, which has been balanced to address class imbalance issues.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

For detailed training logs, please refer to the Tensorboard page.

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.7283 0.0299 500 0.6867 0.7073 0.7038 0.7071 0.7030
0.6718 0.0598 1000 0.6067 0.7340 0.7478 0.7340 0.7377
0.6473 0.0898 1500 0.6154 0.7390 0.7508 0.7390 0.7416
0.616 0.1197 2000 0.6448 0.7423 0.7373 0.7420 0.7377
0.6123 0.1496 2500 0.6286 0.7241 0.7677 0.7243 0.7284
0.5874 0.1795 3000 0.5774 0.7516 0.7539 0.7515 0.7523
0.5746 0.2095 3500 0.5708 0.7564 0.7636 0.7563 0.7582
0.5917 0.2394 4000 0.5839 0.7596 0.7602 0.7595 0.7598
0.5774 0.2693 4500 0.6225 0.7526 0.7482 0.7524 0.7492
0.594 0.2992 5000 0.5531 0.7662 0.7694 0.7661 0.7673
0.5591 0.3292 5500 0.5770 0.7665 0.7645 0.7663 0.7645
0.5548 0.3591 6000 0.5805 0.7613 0.7579 0.7611 0.7584
0.5742 0.3890 6500 0.5592 0.7639 0.7665 0.7638 0.7636
0.5374 0.4189 7000 0.5548 0.7712 0.7776 0.7711 0.7735
0.5488 0.4489 7500 0.5622 0.7747 0.7747 0.7745 0.7746
0.5557 0.4788 8000 0.5698 0.7642 0.7822 0.7643 0.7670
0.556 0.5087 8500 0.5380 0.7754 0.7777 0.7753 0.7764
0.5325 0.5386 9000 0.5791 0.7754 0.7746 0.7751 0.7736
0.5301 0.5686 9500 0.5569 0.7753 0.7738 0.7751 0.7744
0.5232 0.5985 10000 0.5391 0.7782 0.7806 0.7780 0.7789
0.5462 0.6284 10500 0.5499 0.7729 0.7698 0.7726 0.7683
0.5614 0.6583 11000 0.5243 0.7803 0.7818 0.7801 0.7808
0.5376 0.6883 11500 0.5406 0.7795 0.7772 0.7794 0.7780
0.5287 0.7182 12000 0.5227 0.7797 0.7852 0.7796 0.7806
0.5149 0.7481 12500 0.5423 0.7803 0.7788 0.7801 0.7792
0.5312 0.7780 13000 0.5338 0.7771 0.7860 0.7771 0.7781
0.5204 0.8079 13500 0.5183 0.7843 0.7857 0.7841 0.7849
0.5412 0.8379 14000 0.5192 0.7844 0.7893 0.7843 0.7860
0.515 0.8678 14500 0.5135 0.7845 0.7858 0.7843 0.7850
0.5033 0.8977 15000 0.5254 0.7862 0.7882 0.7860 0.7870
0.5023 0.9276 15500 0.5251 0.7863 0.7853 0.7861 0.7856
0.5042 0.9576 16000 0.5215 0.7865 0.7864 0.7864 0.7864
0.5237 0.9875 16500 0.5171 0.7862 0.7876 0.7860 0.7867

Evaluation Results

The fine-tuned DistilBERT model was evaluated on a dataset with the following splits:

  • Training Samples: 133,665
  • Validation Samples: 33,417

The evaluation was conducted on a three-class sentiment classification task. Below are the detailed results:

Classification Report

Label Precision Recall F1-Score Support
0 0.78 0.78 0.78 11163
1 0.69 0.70 0.69 11099
2 0.89 0.87 0.88 11155
Accuracy 0.78 33417
Macro Avg 0.79 0.78 0.78 33417
Weighted Avg 0.79 0.78 0.79 33417

Confusion Matrix

0 1 2
0 8672 2331 160
1 2292 7793 1014
2 169 1237 9749

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jhan21/amazon-reviews-sentiment-distilbert-base-uncased

Finetuned
(8099)
this model

Dataset used to train jhan21/amazon-reviews-sentiment-distilbert-base-uncased