segformer-b0-finetuned-lipid-droplets-v4

This model is a fine-tuned version of nvidia/mit-b0 on the jhaberbe/lipid-droplets-v4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0579
  • Mean Iou: 0.2161
  • Mean Accuracy: 0.4321
  • Overall Accuracy: 0.4321
  • Accuracy Unlabeled: nan
  • Accuracy Lipid: 0.4321
  • Iou Unlabeled: 0.0
  • Iou Lipid: 0.4321

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Lipid Iou Unlabeled Iou Lipid
0.0683 5.0 20 0.4807 0.006 0.012 0.012 nan 0.012 0.0 0.012
0.0727 10.0 40 0.2153 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0324 15.0 60 0.4132 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0229 20.0 80 0.1490 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0314 25.0 100 0.4783 0.0097 0.0193 0.0193 nan 0.0193 0.0 0.0193
0.0187 30.0 120 0.0686 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0326 35.0 140 0.0456 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.024 40.0 160 0.2099 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0162 45.0 180 0.1570 0.0009 0.0018 0.0018 nan 0.0018 0.0 0.0018
0.0129 50.0 200 0.1300 0.0101 0.0201 0.0201 nan 0.0201 0.0 0.0201
0.013 55.0 220 0.1372 0.0044 0.0088 0.0088 nan 0.0088 0.0 0.0088
0.0147 60.0 240 0.1529 0.0484 0.0968 0.0968 nan 0.0968 0.0 0.0968
0.0192 65.0 260 0.0777 0.0094 0.0188 0.0188 nan 0.0188 0.0 0.0188
0.0105 70.0 280 0.1133 0.0073 0.0146 0.0146 nan 0.0146 0.0 0.0146
0.0086 75.0 300 0.1237 0.0039 0.0077 0.0077 nan 0.0077 0.0 0.0077
0.0151 80.0 320 0.0472 0.0001 0.0001 0.0001 nan 0.0001 0.0 0.0001
0.013 85.0 340 0.0373 0.0014 0.0028 0.0028 nan 0.0028 0.0 0.0028
0.053 90.0 360 0.0745 0.0036 0.0072 0.0072 nan 0.0072 0.0 0.0072
0.0117 95.0 380 0.0097 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.018 100.0 400 0.1363 0.1399 0.2797 0.2797 nan 0.2797 0.0 0.2797
0.0099 105.0 420 0.0888 0.0053 0.0106 0.0106 nan 0.0106 0.0 0.0106
0.0063 110.0 440 0.0889 0.0134 0.0269 0.0269 nan 0.0269 0.0 0.0269
0.0127 115.0 460 0.0389 0.0059 0.0119 0.0119 nan 0.0119 0.0 0.0119
0.0153 120.0 480 0.0579 0.0048 0.0095 0.0095 nan 0.0095 0.0 0.0095
0.0064 125.0 500 0.0589 0.0415 0.0830 0.0830 nan 0.0830 0.0 0.0830
0.0074 130.0 520 0.1361 0.0917 0.1833 0.1833 nan 0.1833 0.0 0.1833
0.0062 135.0 540 0.1212 0.1098 0.2196 0.2196 nan 0.2196 0.0 0.2196
0.0053 140.0 560 0.0814 0.0954 0.1908 0.1908 nan 0.1908 0.0 0.1908
0.0065 145.0 580 0.1418 0.1704 0.3408 0.3408 nan 0.3408 0.0 0.3408
0.0118 150.0 600 0.0541 0.0210 0.0419 0.0419 nan 0.0419 0.0 0.0419
0.0111 155.0 620 0.0801 0.0419 0.0839 0.0839 nan 0.0839 0.0 0.0839
0.0077 160.0 640 0.0628 0.2041 0.4081 0.4081 nan 0.4081 0.0 0.4081
0.0118 165.0 660 0.1001 0.1372 0.2743 0.2743 nan 0.2743 0.0 0.2743
0.0078 170.0 680 0.1254 0.1439 0.2879 0.2879 nan 0.2879 0.0 0.2879
0.0058 175.0 700 0.1119 0.2726 0.5452 0.5452 nan 0.5452 0.0 0.5452
0.0097 180.0 720 0.1608 0.3098 0.6196 0.6196 nan 0.6196 0.0 0.6196
0.0063 185.0 740 0.1617 0.2622 0.5244 0.5244 nan 0.5244 0.0 0.5244
0.0095 190.0 760 0.0526 0.0804 0.1608 0.1608 nan 0.1608 0.0 0.1608
0.0119 195.0 780 0.1438 0.2352 0.4703 0.4703 nan 0.4703 0.0 0.4703
0.0264 200.0 800 0.1563 0.3272 0.6545 0.6545 nan 0.6545 0.0 0.6545
0.0043 205.0 820 0.0605 0.2524 0.5048 0.5048 nan 0.5048 0.0 0.5048
0.0055 210.0 840 0.1585 0.3650 0.7299 0.7299 nan 0.7299 0.0 0.7299
0.009 215.0 860 0.1218 0.2845 0.5690 0.5690 nan 0.5690 0.0 0.5690
0.0295 220.0 880 0.5198 0.4981 0.9963 0.9963 nan 0.9963 0.0 0.9963
0.004 225.0 900 0.1908 0.2370 0.4741 0.4741 nan 0.4741 0.0 0.4741
0.0108 230.0 920 0.0077 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0034 235.0 940 0.1812 0.1838 0.3676 0.3676 nan 0.3676 0.0 0.3676
0.0058 240.0 960 0.1195 0.1750 0.3501 0.3501 nan 0.3501 0.0 0.3501
0.0076 245.0 980 0.1365 0.0957 0.1914 0.1914 nan 0.1914 0.0 0.1914
0.0056 250.0 1000 0.0098 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0088 255.0 1020 0.0514 0.1783 0.3567 0.3567 nan 0.3567 0.0 0.3567
0.0143 260.0 1040 0.0106 0.0002 0.0004 0.0004 nan 0.0004 0.0 0.0004
0.0052 265.0 1060 0.0749 0.0476 0.0952 0.0952 nan 0.0952 0.0 0.0952
0.0084 270.0 1080 0.1056 0.2186 0.4372 0.4372 nan 0.4372 0.0 0.4372
0.0084 275.0 1100 0.1106 0.0734 0.1469 0.1469 nan 0.1469 0.0 0.1469
0.0043 280.0 1120 0.1078 0.3212 0.6425 0.6425 nan 0.6425 0.0 0.6425
0.0079 285.0 1140 0.0610 0.2426 0.4851 0.4851 nan 0.4851 0.0 0.4851
0.0037 290.0 1160 0.0624 0.2492 0.4985 0.4985 nan 0.4985 0.0 0.4985
0.0084 295.0 1180 0.1833 0.2811 0.5622 0.5622 nan 0.5622 0.0 0.5622
0.0049 300.0 1200 0.0843 0.2817 0.5634 0.5634 nan 0.5634 0.0 0.5634
0.0064 305.0 1220 0.0625 0.1790 0.3581 0.3581 nan 0.3581 0.0 0.3581
0.011 310.0 1240 0.0653 0.1121 0.2241 0.2241 nan 0.2241 0.0 0.2241
0.0041 315.0 1260 0.0620 0.198 0.396 0.396 nan 0.396 0.0 0.396
0.0079 320.0 1280 0.0733 0.11 0.22 0.22 nan 0.22 0.0 0.22
0.0039 325.0 1300 0.2672 0.2041 0.4081 0.4081 nan 0.4081 0.0 0.4081
0.0081 330.0 1320 0.0231 0.0708 0.1415 0.1415 nan 0.1415 0.0 0.1415
0.0038 335.0 1340 0.0244 0.1270 0.2541 0.2541 nan 0.2541 0.0 0.2541
0.0078 340.0 1360 0.0095 0.0198 0.0396 0.0396 nan 0.0396 0.0 0.0396
0.0061 345.0 1380 0.1181 0.1386 0.2772 0.2772 nan 0.2772 0.0 0.2772
0.0099 350.0 1400 0.0350 0.0970 0.1939 0.1939 nan 0.1939 0.0 0.1939
0.0066 355.0 1420 0.0303 0.1477 0.2954 0.2954 nan 0.2954 0.0 0.2954
0.0083 360.0 1440 0.0919 0.1237 0.2474 0.2474 nan 0.2474 0.0 0.2474
0.0082 365.0 1460 0.0087 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0078 370.0 1480 0.1443 0.3666 0.7331 0.7331 nan 0.7331 0.0 0.7331
0.0075 375.0 1500 0.0493 0.038 0.076 0.076 nan 0.076 0.0 0.076
0.0058 380.0 1520 0.0941 0.2978 0.5956 0.5956 nan 0.5956 0.0 0.5956
0.0045 385.0 1540 0.0353 0.1239 0.2479 0.2479 nan 0.2479 0.0 0.2479
0.0077 390.0 1560 0.0469 0.1066 0.2131 0.2131 nan 0.2131 0.0 0.2131
0.0057 395.0 1580 0.0533 0.1192 0.2383 0.2383 nan 0.2383 0.0 0.2383
0.0073 400.0 1600 0.1126 0.1331 0.2662 0.2662 nan 0.2662 0.0 0.2662
0.0042 405.0 1620 0.1222 0.2205 0.4410 0.4410 nan 0.4410 0.0 0.4410
0.0078 410.0 1640 0.1111 0.2519 0.5039 0.5039 nan 0.5039 0.0 0.5039
0.0056 415.0 1660 0.0988 0.2311 0.4622 0.4622 nan 0.4622 0.0 0.4622
0.0093 420.0 1680 0.0464 0.0693 0.1386 0.1386 nan 0.1386 0.0 0.1386
0.0072 425.0 1700 0.0751 0.228 0.456 0.456 nan 0.456 0.0 0.456
0.0026 430.0 1720 0.0728 0.2397 0.4793 0.4793 nan 0.4793 0.0 0.4793
0.0051 435.0 1740 0.0443 0.0879 0.1757 0.1757 nan 0.1757 0.0 0.1757
0.0092 440.0 1760 0.0694 0.1514 0.3029 0.3029 nan 0.3029 0.0 0.3029
0.0079 445.0 1780 0.0287 0.1381 0.2761 0.2761 nan 0.2761 0.0 0.2761
0.0048 450.0 1800 0.0597 0.2146 0.4292 0.4292 nan 0.4292 0.0 0.4292
0.007 455.0 1820 0.1145 0.232 0.464 0.464 nan 0.464 0.0 0.464
0.0062 460.0 1840 0.0854 0.2715 0.5430 0.5430 nan 0.5430 0.0 0.5430
0.0031 465.0 1860 0.1299 0.2943 0.5886 0.5886 nan 0.5886 0.0 0.5886
0.0056 470.0 1880 0.0560 0.1650 0.3299 0.3299 nan 0.3299 0.0 0.3299
0.0031 475.0 1900 0.0706 0.1521 0.3043 0.3043 nan 0.3043 0.0 0.3043
0.0024 480.0 1920 0.0478 0.1862 0.3724 0.3724 nan 0.3724 0.0 0.3724
0.007 485.0 1940 0.0357 0.1796 0.3592 0.3592 nan 0.3592 0.0 0.3592
0.0075 490.0 1960 0.0598 0.1544 0.3088 0.3088 nan 0.3088 0.0 0.3088
0.0031 495.0 1980 0.0447 0.3236 0.6472 0.6472 nan 0.6472 0.0 0.6472
0.007 500.0 2000 0.1198 0.3270 0.6541 0.6541 nan 0.6541 0.0 0.6541
0.009 505.0 2020 0.0550 0.2481 0.4963 0.4963 nan 0.4963 0.0 0.4963
0.0042 510.0 2040 0.0649 0.2150 0.4299 0.4299 nan 0.4299 0.0 0.4299
0.0024 515.0 2060 0.0731 0.2039 0.4079 0.4079 nan 0.4079 0.0 0.4079
0.0034 520.0 2080 0.0812 0.2652 0.5303 0.5303 nan 0.5303 0.0 0.5303
0.0039 525.0 2100 0.0719 0.1894 0.3788 0.3788 nan 0.3788 0.0 0.3788
0.0061 530.0 2120 0.0943 0.2135 0.4270 0.4270 nan 0.4270 0.0 0.4270
0.0054 535.0 2140 0.0578 0.2337 0.4674 0.4674 nan 0.4674 0.0 0.4674
0.0074 540.0 2160 0.1498 0.4530 0.9059 0.9059 nan 0.9059 0.0 0.9059
0.0052 545.0 2180 0.1614 0.4556 0.9112 0.9112 nan 0.9112 0.0 0.9112
0.0068 550.0 2200 0.0747 0.3214 0.6428 0.6428 nan 0.6428 0.0 0.6428
0.0068 555.0 2220 0.0462 0.1623 0.3247 0.3247 nan 0.3247 0.0 0.3247
0.0097 560.0 2240 0.0748 0.3294 0.6588 0.6588 nan 0.6588 0.0 0.6588
0.0066 565.0 2260 0.0913 0.2101 0.4203 0.4203 nan 0.4203 0.0 0.4203
0.0054 570.0 2280 0.0472 0.1623 0.3247 0.3247 nan 0.3247 0.0 0.3247
0.0039 575.0 2300 0.0361 0.0861 0.1721 0.1721 nan 0.1721 0.0 0.1721
0.0023 580.0 2320 0.0547 0.1886 0.3772 0.3772 nan 0.3772 0.0 0.3772
0.0056 585.0 2340 0.0668 0.2911 0.5822 0.5822 nan 0.5822 0.0 0.5822
0.0055 590.0 2360 0.0511 0.2152 0.4303 0.4303 nan 0.4303 0.0 0.4303
0.0027 595.0 2380 0.0570 0.2193 0.4386 0.4386 nan 0.4386 0.0 0.4386
0.0046 600.0 2400 0.0373 0.0786 0.1572 0.1572 nan 0.1572 0.0 0.1572
0.0035 605.0 2420 0.0468 0.0870 0.1741 0.1741 nan 0.1741 0.0 0.1741
0.0022 610.0 2440 0.0476 0.1029 0.2058 0.2058 nan 0.2058 0.0 0.2058
0.0058 615.0 2460 0.0418 0.1003 0.2007 0.2007 nan 0.2007 0.0 0.2007
0.003 620.0 2480 0.0520 0.2134 0.4269 0.4269 nan 0.4269 0.0 0.4269
0.0072 625.0 2500 0.0475 0.198 0.396 0.396 nan 0.396 0.0 0.396
0.0054 630.0 2520 0.0371 0.1370 0.2741 0.2741 nan 0.2741 0.0 0.2741
0.0033 635.0 2540 0.0635 0.132 0.264 0.264 nan 0.264 0.0 0.264
0.0076 640.0 2560 0.0540 0.1278 0.2556 0.2556 nan 0.2556 0.0 0.2556
0.0067 645.0 2580 0.0339 0.128 0.256 0.256 nan 0.256 0.0 0.256
0.0032 650.0 2600 0.0399 0.1341 0.2683 0.2683 nan 0.2683 0.0 0.2683
0.0024 655.0 2620 0.0467 0.108 0.216 0.216 nan 0.216 0.0 0.216
0.0032 660.0 2640 0.0472 0.1653 0.3306 0.3306 nan 0.3306 0.0 0.3306
0.006 665.0 2660 0.0540 0.1963 0.3927 0.3927 nan 0.3927 0.0 0.3927
0.0021 670.0 2680 0.0532 0.1886 0.3771 0.3771 nan 0.3771 0.0 0.3771
0.0037 675.0 2700 0.0661 0.2588 0.5177 0.5177 nan 0.5177 0.0 0.5177
0.0073 680.0 2720 0.0514 0.1327 0.2654 0.2654 nan 0.2654 0.0 0.2654
0.0038 685.0 2740 0.0596 0.2090 0.4179 0.4179 nan 0.4179 0.0 0.4179
0.0038 690.0 2760 0.0421 0.1279 0.2557 0.2557 nan 0.2557 0.0 0.2557
0.0036 695.0 2780 0.0626 0.1976 0.3952 0.3952 nan 0.3952 0.0 0.3952
0.003 700.0 2800 0.0525 0.212 0.424 0.424 nan 0.424 0.0 0.424
0.0046 705.0 2820 0.0515 0.274 0.548 0.548 nan 0.548 0.0 0.548
0.004 710.0 2840 0.0691 0.2222 0.4444 0.4444 nan 0.4444 0.0 0.4444
0.0029 715.0 2860 0.0495 0.1559 0.3117 0.3117 nan 0.3117 0.0 0.3117
0.0057 720.0 2880 0.0442 0.1541 0.3081 0.3081 nan 0.3081 0.0 0.3081
0.007 725.0 2900 0.0835 0.1562 0.3124 0.3124 nan 0.3124 0.0 0.3124
0.0023 730.0 2920 0.0686 0.1466 0.2931 0.2931 nan 0.2931 0.0 0.2931
0.0054 735.0 2940 0.0813 0.1685 0.3370 0.3370 nan 0.3370 0.0 0.3370
0.0035 740.0 2960 0.0679 0.1623 0.3247 0.3247 nan 0.3247 0.0 0.3247
0.0035 745.0 2980 0.0535 0.1502 0.3004 0.3004 nan 0.3004 0.0 0.3004
0.003 750.0 3000 0.0645 0.1266 0.2531 0.2531 nan 0.2531 0.0 0.2531
0.0059 755.0 3020 0.0617 0.1535 0.3070 0.3070 nan 0.3070 0.0 0.3070
0.004 760.0 3040 0.0698 0.1315 0.2630 0.2630 nan 0.2630 0.0 0.2630
0.0032 765.0 3060 0.0515 0.1148 0.2297 0.2297 nan 0.2297 0.0 0.2297
0.0031 770.0 3080 0.0574 0.1309 0.2618 0.2618 nan 0.2618 0.0 0.2618
0.0039 775.0 3100 0.0480 0.1624 0.3248 0.3248 nan 0.3248 0.0 0.3248
0.0064 780.0 3120 0.0490 0.1434 0.2869 0.2869 nan 0.2869 0.0 0.2869
0.0056 785.0 3140 0.0492 0.1514 0.3028 0.3028 nan 0.3028 0.0 0.3028
0.0018 790.0 3160 0.0703 0.1704 0.3408 0.3408 nan 0.3408 0.0 0.3408
0.0015 795.0 3180 0.0819 0.2045 0.4090 0.4090 nan 0.4090 0.0 0.4090
0.0042 800.0 3200 0.0774 0.2131 0.4262 0.4262 nan 0.4262 0.0 0.4262
0.0037 805.0 3220 0.0510 0.1390 0.2779 0.2779 nan 0.2779 0.0 0.2779
0.0032 810.0 3240 0.0628 0.1786 0.3571 0.3571 nan 0.3571 0.0 0.3571
0.0026 815.0 3260 0.0778 0.1746 0.3492 0.3492 nan 0.3492 0.0 0.3492
0.0022 820.0 3280 0.0600 0.1619 0.3237 0.3237 nan 0.3237 0.0 0.3237
0.0042 825.0 3300 0.0691 0.1792 0.3583 0.3583 nan 0.3583 0.0 0.3583
0.0032 830.0 3320 0.0831 0.2368 0.4737 0.4737 nan 0.4737 0.0 0.4737
0.0041 835.0 3340 0.0627 0.1748 0.3495 0.3495 nan 0.3495 0.0 0.3495
0.0024 840.0 3360 0.0598 0.1503 0.3007 0.3007 nan 0.3007 0.0 0.3007
0.0017 845.0 3380 0.0719 0.1588 0.3175 0.3175 nan 0.3175 0.0 0.3175
0.0044 850.0 3400 0.0526 0.1526 0.3051 0.3051 nan 0.3051 0.0 0.3051
0.0059 855.0 3420 0.0610 0.17 0.34 0.34 nan 0.34 0.0 0.34
0.0046 860.0 3440 0.0628 0.1697 0.3394 0.3394 nan 0.3394 0.0 0.3394
0.0058 865.0 3460 0.0507 0.1936 0.3872 0.3872 nan 0.3872 0.0 0.3872
0.0049 870.0 3480 0.0482 0.1659 0.3319 0.3319 nan 0.3319 0.0 0.3319
0.003 875.0 3500 0.0692 0.2345 0.4690 0.4690 nan 0.4690 0.0 0.4690
0.0048 880.0 3520 0.0525 0.1594 0.3189 0.3189 nan 0.3189 0.0 0.3189
0.003 885.0 3540 0.0564 0.2008 0.4015 0.4015 nan 0.4015 0.0 0.4015
0.004 890.0 3560 0.0428 0.1561 0.3123 0.3123 nan 0.3123 0.0 0.3123
0.0018 895.0 3580 0.0454 0.144 0.288 0.288 nan 0.288 0.0 0.288
0.0023 900.0 3600 0.0460 0.1642 0.3284 0.3284 nan 0.3284 0.0 0.3284
0.0043 905.0 3620 0.0513 0.2052 0.4103 0.4103 nan 0.4103 0.0 0.4103
0.0013 910.0 3640 0.0502 0.1739 0.3479 0.3479 nan 0.3479 0.0 0.3479
0.0057 915.0 3660 0.0440 0.1687 0.3374 0.3374 nan 0.3374 0.0 0.3374
0.006 920.0 3680 0.0483 0.1517 0.3034 0.3034 nan 0.3034 0.0 0.3034
0.0029 925.0 3700 0.0443 0.1550 0.3101 0.3101 nan 0.3101 0.0 0.3101
0.0044 930.0 3720 0.0506 0.1661 0.3323 0.3323 nan 0.3323 0.0 0.3323
0.0016 935.0 3740 0.0612 0.1957 0.3914 0.3914 nan 0.3914 0.0 0.3914
0.0026 940.0 3760 0.0525 0.1766 0.3531 0.3531 nan 0.3531 0.0 0.3531
0.005 945.0 3780 0.0551 0.2171 0.4342 0.4342 nan 0.4342 0.0 0.4342
0.0035 950.0 3800 0.0554 0.1841 0.3683 0.3683 nan 0.3683 0.0 0.3683
0.003 955.0 3820 0.0271 0.1519 0.3037 0.3037 nan 0.3037 0.0 0.3037
0.0054 960.0 3840 0.0493 0.1688 0.3375 0.3375 nan 0.3375 0.0 0.3375
0.0031 965.0 3860 0.0518 0.1751 0.3502 0.3502 nan 0.3502 0.0 0.3502
0.005 970.0 3880 0.0569 0.1903 0.3807 0.3807 nan 0.3807 0.0 0.3807
0.0023 975.0 3900 0.0498 0.1952 0.3903 0.3903 nan 0.3903 0.0 0.3903
0.0023 980.0 3920 0.0581 0.2254 0.4508 0.4508 nan 0.4508 0.0 0.4508
0.0014 985.0 3940 0.0361 0.1692 0.3383 0.3383 nan 0.3383 0.0 0.3383
0.0028 990.0 3960 0.0524 0.2134 0.4268 0.4268 nan 0.4268 0.0 0.4268
0.0039 995.0 3980 0.0586 0.2223 0.4446 0.4446 nan 0.4446 0.0 0.4446
0.0055 1000.0 4000 0.0579 0.2161 0.4321 0.4321 nan 0.4321 0.0 0.4321

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jhaberbe/segformer-b0-finetuned-lipid-droplets-v4

Base model

nvidia/mit-b0
Finetuned
(385)
this model