Whisper Tiny Taiwanese (topline)

This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0400
  • Cer: 20.3105

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1362
  • training_steps: 13620
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.6758 0.9985 681 0.6816 35.6624
0.5019 1.9971 1362 0.6077 24.6575
0.3484 2.9956 2043 0.5875 23.5932
0.2444 3.9941 2724 0.6029 22.1000
0.16 4.9927 3405 0.6502 22.3178
0.1084 5.9912 4086 0.7111 22.3447
0.0728 6.9897 4767 0.7801 22.1145
0.0493 7.9883 5448 0.8294 22.0905
0.0333 8.9868 6129 0.8626 22.4998
0.0248 9.9853 6810 0.8916 21.6134
0.018 10.9839 7491 0.9241 21.7539
0.0122 11.9824 8172 0.9620 21.7042
0.0086 12.9809 8853 0.9697 21.6206
0.0064 13.9795 9534 0.9937 21.1544
0.0037 14.9780 10215 1.0012 21.0531
0.0021 15.9765 10896 1.0125 20.6351
0.0015 16.9751 11577 1.0279 20.4550
0.0015 17.9736 12258 1.0328 20.2847
0.0018 18.9721 12939 1.0392 20.3533
0.0011 19.9707 13620 1.0400 20.3105

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.0.0.post304
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
11
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jethrowang/whisper-tiny_tat-esc_topline

Finetuned
(1500)
this model