Whisper Tiny Taiwanese (exp_nr_0.5_cc_0.5_embeds)
This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:
- Loss: 2.2774
- Cer: 41.7092
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 681
- training_steps: 6810
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.4532 | 0.9985 | 681 | 1.3229 | 45.0006 |
0.2812 | 1.9971 | 1362 | 1.3009 | 47.7935 |
0.1813 | 2.9956 | 2043 | 1.2902 | 45.8631 |
0.119 | 3.9941 | 2724 | 1.3410 | 45.0435 |
0.0751 | 4.9927 | 3405 | 1.4026 | 43.7097 |
0.0409 | 5.9912 | 4086 | 1.6134 | 44.5456 |
0.0231 | 6.9897 | 4767 | 1.7609 | 42.9457 |
0.0094 | 7.9883 | 5448 | 1.9361 | 42.7805 |
0.0026 | 8.9868 | 6129 | 2.1500 | 41.6526 |
0.0005 | 9.9853 | 6810 | 2.2774 | 41.7092 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.0.0.post304
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jethrowang/whisper-tiny_tat-esc_exp_nr_0.5_cc_0.5_embeds
Base model
openai/whisper-tiny