lora

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the flock_task5_tranning dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7054

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.287 0.6897 10 1.4997
1.3264 1.3448 20 1.3904
0.9293 2.0 30 1.2929
1.2359 2.6897 40 1.2001
1.1123 3.3448 50 1.1125
0.8456 4.0 60 1.0130
0.92 4.6897 70 0.9277
0.9875 5.3448 80 0.8583
0.6225 6.0 90 0.8013
0.825 6.6897 100 0.7550
0.6775 7.3448 110 0.7281
0.6614 8.0 120 0.7120
0.6203 8.6897 130 0.7067
0.6521 9.3448 140 0.7054

Framework versions

  • PEFT 0.12.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
63
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for jerseyjerry/task-5-microsoft-Phi-3-mini-4k-instruct-20250224

Adapter
(758)
this model