jerseyjerry's picture
Uploading model files
02f330e verified
metadata
library_name: peft
license: other
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
  - llama-factory
  - lora
  - generated_from_trainer
model-index:
  - name: lora
    results: []

lora

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the flock_task4_tranning dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.1 0.0501 50 1.2970
1.0774 0.1002 100 1.2504
0.9563 0.1502 150 1.2521
1.0242 0.2003 200 1.2253
1.0038 0.2504 250 1.2113
0.9858 0.3005 300 1.1920
0.8694 0.3505 350 1.1918
0.9174 0.4006 400 1.1884
0.9653 0.4507 450 1.1870
0.9136 0.5008 500 1.1768
0.9014 0.5508 550 1.1673
0.9203 0.6009 600 1.1558
0.8902 0.6510 650 1.1679
0.9018 0.7011 700 1.1489
0.937 0.7511 750 1.1577
0.8984 0.8012 800 1.1463
0.8607 0.8513 850 1.1517
0.8698 0.9014 900 1.1436
0.9661 0.9514 950 1.1479
0.672 1.0010 1000 1.1459
0.8162 1.0511 1050 1.1374
0.8477 1.1012 1100 1.1434
0.9039 1.1512 1150 1.1394
0.8361 1.2013 1200 1.1434
0.8091 1.2514 1250 1.1391
0.7854 1.3015 1300 1.1392
0.7716 1.3515 1350 1.1403
0.8637 1.4016 1400 1.1337
0.8491 1.4517 1450 1.1392
0.9037 1.5018 1500 1.1325
0.8698 1.5518 1550 1.1371
0.7614 1.6019 1600 1.1332
0.7492 1.6520 1650 1.1350
0.8217 1.7021 1700 1.1321
0.8261 1.7521 1750 1.1323
0.8286 1.8022 1800 1.1325
0.8208 1.8523 1850 1.1335
0.7937 1.9024 1900 1.1338
0.837 1.9524 1950 1.1342

Framework versions

  • PEFT 0.12.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0