checkpoints / README.md
jckim's picture
gglabs/stt-turbo-multilingual-test
896417c verified
---
library_name: peft
language:
- multilingual
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Turbo Multilingual
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Turbo Multilingual
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4791
- Wer: 18.75
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3929 | 1.0 | 10 | 0.7320 | 21.875 |
| 0.076 | 2.0 | 20 | 0.4791 | 18.75 |
### Framework versions
- PEFT 0.15.2.dev0
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.0.0
- Tokenizers 0.20.3