๐ก๏ธ Multimodal BN-EN Fake News Scanner
A fine-tuned CLIP model for detecting fake news in Bangla-English (BN-EN) content using text and image analysis.
This model was supervised-trained on real and fake news pairs to better detect misinformation in South Asian digital content. During inference, it uses prompt-based similarity to classify inputs.
Deployed at:
๐ https://huggingface.co/jarif/Multimodal-BNEN-Fake-News-Scanner-Model
โ Key Features
- โ Supervised fine-tuning on fake/real news dataset
- ๐ Bangla + English text support
- ๐ผ๏ธ Analyzes image authenticity
- ๐ Uses prompt-based classification with semantic similarity
- ๐งฉ Built on
openai/clip-vit-base-patch32
, fine-tuned for misinformation detection - ๐ Optimized for South Asian context
- ๐ฆ Fully compatible with Hugging Face
transformers
๐ป Inference Code
Classify images and text as Real or Fake and display results in a clean table using tabulate
.
Install Dependencies
pip install transformers torch pillow tabulate
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
import torch
import torch.nn.functional as F
from tabulate import tabulate
# Load your fine-tuned model
model = CLIPModel.from_pretrained("jarif/Multimodal-BNEN-Fake-News-Scanner-Model")
processor = CLIPProcessor.from_pretrained("jarif/Multimodal-BNEN-Fake-News-Scanner-Model")
# Define class prompts in Bangla
class_texts = ["เฆเฆเฆฟ เฆซเงเฆ เฆจเฆฟเฆเฆ", "เฆเฆเฆฟ เฆฐเฆฟเฆฏเฆผเงเฆฒ เฆจเฆฟเฆเฆ"] # ["This is fake news", "This is real news"]
# --- Image Classification ---
image = Image.open("your_image.jpg").convert("RGB") # Replace with your image path
image_inputs = processor(images=image, return_tensors="pt")
image_emb = model.get_image_features(**image_inputs)
# --- Text Classification ---
text = "เฆชเฆฆเงเฆฎเฆพ เฆจเฆฆเงเฆฐ เฆชเงเฆฐเฆฌเฆฒ เฆธเงเฆฐเงเฆคเง เฆฒเฆเงเฆเฆเฆพเฆ เฆฌเฆฟเฆฒเงเฆจ เฆนเฆฏเฆผเงเฆเงเฅค"
text_inputs = processor(text=text, return_tensors="pt", padding=True, truncation=True)
text_emb = model.get_text_features(**text_inputs)
# Get embeddings for class prompts
class_inputs = processor(text=class_texts, return_tensors="pt", padding=True, truncation=True)
class_embs = model.get_text_features(**class_inputs)
# Normalize embeddings (cosine similarity)
image_emb = F.normalize(image_emb, p=2, dim=-1)
text_emb = F.normalize(text_emb, p=2, dim=-1)
class_embs = F.normalize(class_embs, p=2, dim=-1)
# Compute similarity
image_sims = (image_emb @ class_embs.T).squeeze(0)
text_sims = (text_emb @ class_embs.T).squeeze(0)
# Predict
image_pred = image_sims.argmax().item()
text_pred = text_sims.argmax().item()
image_label = "๐ Fake" if image_pred == 0 else "โ
Real"
text_label = "๐ Fake" if text_pred == 0 else "โ
Real"
# Create result table
table = [
["ImageRelation", image_label],
["Text Relation", text_label]
]
# Print formatted table
print(tabulate(table, headers=["Modality", "Prediction"], tablefmt="fancy_grid"))
๐ Example Output
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Modality โ Prediction โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโก
โ Image Relation โ โ
Real โ
โ Text Relation โ ๐ Fake โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ License
- This model is licensed under Apache 2.0.
- Fine-tuned by Sadik Al Jarif for public misinformation detection.
๐ Acknowledgements
- OpenAI CLIP
- Hugging Face Transformers
- Bangla NLP Community
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support