cvgpt-ft
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7107
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.941 | 1.0 | 1 | 1.9446 |
0.8845 | 2.0 | 2 | 1.9283 |
0.9258 | 3.0 | 3 | 1.8865 |
0.916 | 4.0 | 4 | 1.8419 |
0.9012 | 5.0 | 5 | 1.8004 |
0.7434 | 6.0 | 6 | 1.7642 |
0.822 | 7.0 | 7 | 1.7409 |
0.7946 | 8.0 | 8 | 1.7253 |
0.7461 | 9.0 | 9 | 1.7156 |
0.7523 | 10.0 | 10 | 1.7107 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for jaki-1/cvgpt-ft
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ