Add Gradio Demo File

#2
by zszazi - opened
Files changed (1) hide show
  1. DL_Project_Final.ipynb +0 -181
DL_Project_Final.ipynb DELETED
@@ -1,181 +0,0 @@
1
- {
2
- "nbformat": 4,
3
- "nbformat_minor": 0,
4
- "metadata": {
5
- "colab": {
6
- "provenance": [],
7
- "gpuType": "T4"
8
- },
9
- "kernelspec": {
10
- "name": "python3",
11
- "display_name": "Python 3"
12
- },
13
- "language_info": {
14
- "name": "python"
15
- },
16
- "accelerator": "GPU"
17
- },
18
- "cells": [
19
- {
20
- "cell_type": "code",
21
- "source": [
22
- "!pip install -q gradio_client gradio torch torchaudio transformers"
23
- ],
24
- "metadata": {
25
- "colab": {
26
- "base_uri": "https://localhost:8080/"
27
- },
28
- "id": "CA8lr7CjQnU5",
29
- "outputId": "1a2dfb9c-8e3d-4177-cc19-e17ceb6da284"
30
- },
31
- "execution_count": null,
32
- "outputs": [
33
- {
34
- "output_type": "stream",
35
- "name": "stdout",
36
- "text": [
37
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.5/16.5 MB\u001b[0m \u001b[31m89.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
38
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.9/92.9 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
39
- "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
40
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
41
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m381.9/381.9 kB\u001b[0m \u001b[31m24.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
42
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
43
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.7/59.7 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
44
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m76.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
45
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
46
- "\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
47
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
48
- "lida 0.0.10 requires kaleido, which is not installed.\n",
49
- "llmx 0.0.15a0 requires cohere, which is not installed.\n",
50
- "llmx 0.0.15a0 requires openai, which is not installed.\n",
51
- "llmx 0.0.15a0 requires tiktoken, which is not installed.\n",
52
- "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.8.0 which is incompatible.\u001b[0m\u001b[31m\n",
53
- "\u001b[0m"
54
- ]
55
- }
56
- ]
57
- },
58
- {
59
- "cell_type": "code",
60
- "source": [
61
- "import gradio as gr\n",
62
- "from transformers import pipeline\n",
63
- "import numpy as np\n",
64
- "import requests\n",
65
- "from PIL import Image\n",
66
- "from transformers import BlipProcessor, BlipForQuestionAnswering\n",
67
- "\n",
68
- "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n",
69
- "\n",
70
- "processor = BlipProcessor.from_pretrained(\"jaimik69/blip_finetuned\")\n",
71
- "model = BlipForQuestionAnswering.from_pretrained(\"jaimik69/blip_finetuned\")"
72
- ],
73
- "metadata": {
74
- "colab": {
75
- "base_uri": "https://localhost:8080/"
76
- },
77
- "id": "ExsvuGVbQpHK",
78
- "outputId": "98d83b01-4cd0-4507-bc93-942e998a6c85"
79
- },
80
- "execution_count": null,
81
- "outputs": [
82
- {
83
- "output_type": "stream",
84
- "name": "stderr",
85
- "text": [
86
- "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
87
- ]
88
- }
89
- ]
90
- },
91
- {
92
- "cell_type": "code",
93
- "source": [
94
- "import torch\n",
95
- "\n",
96
- "def transcribe(audio, img_url):\n",
97
- " sr, y = audio\n",
98
- " y = y.astype(np.float32)\n",
99
- " y /= np.max(np.abs(y))\n",
100
- " prompt = transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"]\n",
101
- " raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')\n",
102
- " inputs = processor(raw_image, text=prompt, return_tensors=\"pt\")\n",
103
- " generated_ids = model.generate(**inputs, max_new_tokens=10)\n",
104
- " aqa_ans = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()\n",
105
- "\n",
106
- " return prompt, aqa_ans, gr.Image(img_url)\n",
107
- "\n",
108
- "demo = gr.Interface(\n",
109
- " transcribe,\n",
110
- " [gr.Audio(sources=[\"microphone\"], label = \"User Audio Input\"), gr.Textbox(label=\"User Image URL\")],\n",
111
- " [gr.Textbox(label=\"Question\"), gr.Textbox(label=\"Answer\"), gr.Image(label = \"User Image\")],\n",
112
- " title = 'Vox Helios', theme = 'dark-grass',\n",
113
- " description = 'An Audio Question Answering Project'\n",
114
- ")\n",
115
- "\n",
116
- "if __name__ == \"__main__\":\n",
117
- " demo.launch(debug=True,auth=(\"sai\", \"letmein\"))"
118
- ],
119
- "metadata": {
120
- "colab": {
121
- "base_uri": "https://localhost:8080/",
122
- "height": 719
123
- },
124
- "id": "V0vKhLvCQyUj",
125
- "outputId": "9ce5a8c8-26aa-4dd7-caba-56583799f6a0"
126
- },
127
- "execution_count": null,
128
- "outputs": [
129
- {
130
- "output_type": "stream",
131
- "name": "stderr",
132
- "text": [
133
- "/usr/local/lib/python3.10/dist-packages/gradio/blocks.py:528: UserWarning: Cannot load dark-grass. Caught Exception: The space dark-grass does not exist\n",
134
- " warnings.warn(f\"Cannot load {theme}. Caught Exception: {str(e)}\")\n"
135
- ]
136
- },
137
- {
138
- "output_type": "stream",
139
- "name": "stdout",
140
- "text": [
141
- "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
142
- "\n",
143
- "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
144
- "Running on public URL: https://90c36f56b801550f7e.gradio.live\n",
145
- "\n",
146
- "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
147
- ]
148
- },
149
- {
150
- "output_type": "display_data",
151
- "data": {
152
- "text/plain": [
153
- "<IPython.core.display.HTML object>"
154
- ],
155
- "text/html": [
156
- "<div><iframe src=\"https://90c36f56b801550f7e.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
157
- ]
158
- },
159
- "metadata": {}
160
- },
161
- {
162
- "output_type": "stream",
163
- "name": "stdout",
164
- "text": [
165
- "Keyboard interruption in main thread... closing server.\n",
166
- "Killing tunnel 127.0.0.1:7861 <> https://90c36f56b801550f7e.gradio.live\n"
167
- ]
168
- }
169
- ]
170
- },
171
- {
172
- "cell_type": "code",
173
- "source": [],
174
- "metadata": {
175
- "id": "8nnM-fTOhVex"
176
- },
177
- "execution_count": null,
178
- "outputs": []
179
- }
180
- ]
181
- }