SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jaimevera1107/all-MiniLM-L6-v2-pubmed")
# Run inference
sentences = [
'The ionic currents in the tunicate egg Halocynthia roretzi were found to be solely dependent on potassium concentration, with no influence from sodium.',
'The findings indicated that the ionic currents were completely abolished by the replacement of sodium with potassium ions, showing no other components.',
'The cattle tick Hyalomma anatolicum exhibits varying radiation tolerance levels, with unfed adults tolerating up to 1000 R for engorgement and reproduction, while engorged females can tolerate 10,000 R for oviposition, but higher doses inhibit egg-laying.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 67,560 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 73.08 tokens
- max: 256 tokens
- min: 4 tokens
- mean: 61.28 tokens
- max: 256 tokens
- min: 0.0
- mean: 0.69
- max: 1.0
- Samples:
sentence_0 sentence_1 label Nonstimulated lymphocytes infected with measles virus do not express detectable virus antigens, but upon stimulation with phytohemagglutinin, the virus can be reactivated, leading to increased virus production and cell death.
Nonstimulated lymphocytes infected with measles virus produce detectable virus antigens immediately upon stimulation with phytohemagglutinin.
0.5
In vitro studies of axillary lymph node cells in patients with breast cancer. A total of 170 axillary lymph nodes were obtained from fresh mastectomy specimens from 81 women with breast cancer. Lymph node cells were tested in vitro for T and B cells by the rosette technique and immunofluorescence microscopy and for functional capacity by response to the mitogens phytohemagglutinin (PHA) and concanavalin A. T cells showed a wide range of relative values: 32-80 percent, with a mean of 63.5 percent. B cells defined by the presence of surface immunoglobulins ranged from 14 to 61 percent (mean, 35.8 percent); those defined by the presence of C3 receptors, from 8 to 54 percent (mean, 24.9 percent); and those defined by the presence of IgG-specific (Fc) receptors, from 10 to 45 percent (mean, 27.5 percent). Cells with the C3 and Fc receptors constituted approximately two-thirds of the cells not binding spontaneously to sheep red blood cells (non-SRBC-R), whereas virtually all non-SRBC-R stain...
In a study of axillary lymph nodes from 81 breast cancer patients, T and B cell proportions varied significantly by age, metastatic status, and lymph node morphology, with older patients and nodes with metastasis showing higher B cell and lower T cell percentages.
1.0
Pharmacologic treatment of disorders of bladder and urethra: a review. The use of pharmacologic agents in treating disorders of the bladder and proximal urethra has expanded because of new knowledge gained in the past few years. A better understanding of the properties of these organs as they relate to drugs has contributed to this expansion. The authors present their experience with a number of drugs in treating disorders of the detrusor muscle and proximal urethra, and they briefly review the literature.
Recent advancements in understanding bladder and urethra properties have led to an expanded use of pharmacologic agents for treating related disorders.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.2367 | 500 | 0.065 |
0.4735 | 1000 | 0.041 |
0.7102 | 1500 | 0.0356 |
0.9470 | 2000 | 0.0319 |
1.1837 | 2500 | 0.0287 |
1.4205 | 3000 | 0.0272 |
1.6572 | 3500 | 0.0262 |
1.8939 | 4000 | 0.0263 |
2.1307 | 4500 | 0.0252 |
2.3674 | 5000 | 0.0228 |
2.6042 | 5500 | 0.0225 |
2.8409 | 6000 | 0.0221 |
3.0777 | 6500 | 0.0219 |
3.3144 | 7000 | 0.02 |
3.5511 | 7500 | 0.0198 |
3.7879 | 8000 | 0.0203 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.7.0+cu118
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jaimevera1107/all-MiniLM-L6-v2-pubmed
Base model
sentence-transformers/all-MiniLM-L6-v2