Improve model card: Add metadata, paper, project, and code links

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +30 -24
README.md CHANGED
@@ -4,17 +4,23 @@ tags:
4
  - machine-unlearning
5
  - unlearning
6
  - resnet18
 
 
7
  ---
8
 
9
  # Model Card for jaeunglee/resnet18-cifar10-unlearning
10
 
11
  This repository contains ResNet18 models retrained on the CIFAR-10 dataset with specific classes excluded during training. Each model is trained to study the impact of class exclusion on model performance and generalization.
12
 
 
 
 
 
13
  ---
14
  ## Evaluation
15
 
16
- - **Testing Data:** CIFAR-10 test set
17
- - **Metrics:** Top-1 accuracy
18
 
19
  ### Results
20
 
@@ -36,19 +42,19 @@ This repository contains ResNet18 models retrained on the CIFAR-10 dataset with
36
 
37
  ### Training Procedure
38
 
39
- - **Base Model:** ResNet18
40
- - **Dataset:** CIFAR-10
41
- - **Excluded Class:** Varies by model
42
- - **Loss Function:** CrossEntropyLoss
43
- - **Optimizer:** SGD with:
44
- - Learning rate: `0.1`
45
- - Momentum: `0.9`
46
- - Weight decay: `5e-4`
47
- - Nesterov: `True`
48
- - **Scheduler:** CosineAnnealingLR (T_max: `200`)
49
- - **Training Epochs:** `200`
50
- - **Batch Size:** `128`
51
- - **Hardware:** Single GPU
52
 
53
  ### Notes on Training
54
 
@@ -59,21 +65,21 @@ The training recipe is adapted from the paper **"Benchopt: Reproducible, efficie
59
 
60
  The following transformations were applied to the CIFAR-10 dataset:
61
 
62
- - **Base Transformations (applied to both training and test sets):**
63
- - Conversion to PyTorch tensors using `ToTensor()`.
64
- - Normalization using mean `(0.4914, 0.4822, 0.4465)` and standard deviation `(0.2023, 0.1994, 0.2010)`.
65
 
66
- - **Training Set Augmentation (only for training data):**
67
- - **RandomCrop(32, padding=4):** Randomly crops images with padding for spatial variation.
68
- - **RandomHorizontalFlip():** Randomly flips images horizontally with a 50% probability.
69
 
70
  These augmentations help improve the model's ability to generalize by introducing variability in the training data.
71
 
72
  ### Model Description
73
 
74
- - **Developed by:** Jaeung Lee
75
- - **Model type:** Image Classification
76
- - **License:** MIT
77
 
78
  ### Related Work
79
 
 
4
  - machine-unlearning
5
  - unlearning
6
  - resnet18
7
+ pipeline_tag: image-classification
8
+ library_name: pytorch
9
  ---
10
 
11
  # Model Card for jaeunglee/resnet18-cifar10-unlearning
12
 
13
  This repository contains ResNet18 models retrained on the CIFAR-10 dataset with specific classes excluded during training. Each model is trained to study the impact of class exclusion on model performance and generalization.
14
 
15
+ **Paper:** [Unlearning Comparator: A Visual Analytics System for Comparative Evaluation of Machine Unlearning Methods](https://huggingface.co/papers/2508.12730)
16
+ **Project Page:** [https://gnueaj.github.io/Machine-Unlearning-Comparator/](https://gnueaj.github.io/Machine-Unlearning-Comparator/)
17
+ **GitHub Repository:** [https://github.com/gnueaj/Machine-Unlearning-Comparator](https://github.com/gnueaj/Machine-Unlearning-Comparator)
18
+
19
  ---
20
  ## Evaluation
21
 
22
+ - **Testing Data:** CIFAR-10 test set
23
+ - **Metrics:** Top-1 accuracy
24
 
25
  ### Results
26
 
 
42
 
43
  ### Training Procedure
44
 
45
+ - **Base Model:** ResNet18
46
+ - **Dataset:** CIFAR-10
47
+ - **Excluded Class:** Varies by model
48
+ - **Loss Function:** CrossEntropyLoss
49
+ - **Optimizer:** SGD with:
50
+ - Learning rate: `0.1`
51
+ - Momentum: `0.9`
52
+ - Weight decay: `5e-4`
53
+ - Nesterov: `True`
54
+ - **Scheduler:** CosineAnnealingLR (T_max: `200`)
55
+ - **Training Epochs:** `200`
56
+ - **Batch Size:** `128`
57
+ - **Hardware:** Single GPU
58
 
59
  ### Notes on Training
60
 
 
65
 
66
  The following transformations were applied to the CIFAR-10 dataset:
67
 
68
+ - **Base Transformations (applied to both training and test sets):**
69
+ - Conversion to PyTorch tensors using `ToTensor()`.
70
+ - Normalization using mean `(0.4914, 0.4822, 0.4465)` and standard deviation `(0.2023, 0.1994, 0.2010)`.
71
 
72
+ - **Training Set Augmentation (only for training data):**
73
+ - **RandomCrop(32, padding=4):** Randomly crops images with padding for spatial variation.
74
+ - **RandomHorizontalFlip():** Randomly flips images horizontally with a 50% probability.
75
 
76
  These augmentations help improve the model's ability to generalize by introducing variability in the training data.
77
 
78
  ### Model Description
79
 
80
+ - **Developed by:** Jaeung Lee
81
+ - **Model type:** Image Classification
82
+ - **License:** MIT
83
 
84
  ### Related Work
85