Visualize in Weights & Biases

segformer-b5-finetuned-IDD-L2_v2

This model is a fine-tuned version of nvidia/mit-b5 on the IDD 20K Semantic Segmentation Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5563
  • Mean Iou: 0.7180
  • Mean Accuracy: 0.8224
  • Overall Accuracy: 0.9083
  • Accuracy Road: 0.9716
  • Accuracy Parking: 0.7949
  • Accuracy Sidewalk: 0.8240
  • Accuracy Rail track: 0.6408
  • Accuracy Person: 0.8057
  • Accuracy Rider: 0.8434
  • Accuracy Motorcycle: 0.8762
  • Accuracy Autorickshaw: 0.9451
  • Accuracy Truck: 0.9122
  • Accuracy Curb: 0.8112
  • Accuracy Fence: 0.5699
  • Accuracy Billboard: 0.7605
  • Accuracy Pole: 0.6010
  • Accuracy Building: 0.8678
  • Accuracy Vegetation: 0.9495
  • Accuracy Sky: 0.9841
  • Iou Road: 0.9391
  • Iou Parking: 0.6620
  • Iou Sidewalk: 0.6707
  • Iou Rail track: 0.5025
  • Iou Person: 0.6726
  • Iou Rider: 0.7228
  • Iou Motorcycle: 0.7637
  • Iou Autorickshaw: 0.8882
  • Iou Truck: 0.8506
  • Iou Curb: 0.6721
  • Iou Fence: 0.4571
  • Iou Billboard: 0.6238
  • Iou Pole: 0.4831
  • Iou Building: 0.7293
  • Iou Vegetation: 0.8792
  • Iou Sky: 0.9707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Road Accuracy Parking Accuracy Sidewalk Accuracy Rail track Accuracy Person Accuracy Rider Accuracy Motorcycle Accuracy Autorickshaw Accuracy Truck Accuracy Curb Accuracy Fence Accuracy Billboard Accuracy Pole Accuracy Building Accuracy Vegetation Accuracy Sky Iou Road Iou Parking Iou Sidewalk Iou Rail track Iou Person Iou Rider Iou Motorcycle Iou Autorickshaw Iou Truck Iou Curb Iou Fence Iou Billboard Iou Pole Iou Building Iou Vegetation Iou Sky
0.3096 1.0 202 0.3310 0.6476 0.7663 0.8841 0.9538 0.7998 0.7838 0.5755 0.6912 0.7355 0.8445 0.9518 0.8603 0.7173 0.3997 0.6938 0.4456 0.8868 0.9531 0.9690 0.9256 0.6317 0.5876 0.4378 0.5705 0.5911 0.6722 0.8070 0.7758 0.6255 0.3351 0.5507 0.3663 0.6693 0.8551 0.9600
0.2786 2.0 404 0.3369 0.6560 0.7917 0.8774 0.8968 0.8571 0.8009 0.5009 0.7221 0.8105 0.8267 0.9102 0.9216 0.8204 0.6046 0.6927 0.5244 0.8650 0.9354 0.9773 0.8834 0.5556 0.5941 0.4215 0.6054 0.6340 0.6926 0.8403 0.7757 0.6229 0.3671 0.5681 0.4130 0.6967 0.8610 0.9641
0.2541 3.0 606 0.3013 0.6796 0.7930 0.8958 0.9724 0.7579 0.8132 0.5424 0.7483 0.8020 0.8235 0.9296 0.9107 0.8067 0.5309 0.7415 0.5359 0.8420 0.9502 0.9806 0.9336 0.6384 0.6194 0.4623 0.6185 0.6505 0.7102 0.8534 0.8099 0.6446 0.3983 0.5839 0.4236 0.6975 0.8641 0.9660
0.2304 4.0 808 0.3055 0.6860 0.8016 0.8947 0.9493 0.8219 0.7667 0.5809 0.7948 0.7780 0.8393 0.9303 0.9033 0.7869 0.5968 0.7070 0.5882 0.8711 0.9259 0.9851 0.9250 0.6310 0.6435 0.4815 0.6264 0.6589 0.7188 0.8609 0.8095 0.6519 0.4044 0.5840 0.4376 0.7066 0.8697 0.9671
0.214 5.0 1010 0.3138 0.6845 0.7921 0.8967 0.9526 0.8481 0.8431 0.4857 0.7539 0.7570 0.8772 0.9463 0.8889 0.7298 0.4582 0.7475 0.5890 0.8661 0.9449 0.9850 0.9289 0.6438 0.6386 0.4351 0.6379 0.6594 0.7182 0.8578 0.8239 0.6402 0.3870 0.5965 0.4537 0.6955 0.8695 0.9666
0.2029 6.0 1212 0.3123 0.6914 0.8010 0.8988 0.9697 0.7612 0.8111 0.6453 0.7988 0.8621 0.8112 0.9377 0.9028 0.7567 0.5211 0.7047 0.5390 0.8494 0.9638 0.9822 0.9339 0.6378 0.6746 0.4754 0.6271 0.6660 0.7143 0.8682 0.8305 0.6344 0.4264 0.5947 0.4335 0.7168 0.8614 0.9679
0.1837 7.0 1414 0.3201 0.6963 0.8009 0.9008 0.9614 0.8304 0.7910 0.5696 0.7538 0.8212 0.8642 0.9357 0.9092 0.7900 0.5475 0.6914 0.5137 0.9004 0.9509 0.9841 0.9337 0.6534 0.6600 0.4621 0.6489 0.6881 0.7289 0.8715 0.8325 0.6717 0.4265 0.5842 0.4306 0.7074 0.8725 0.9683
0.1904 8.0 1616 0.3075 0.6946 0.8092 0.8997 0.9693 0.7558 0.7707 0.6996 0.7802 0.8379 0.8572 0.9428 0.8965 0.7714 0.5436 0.7467 0.6316 0.8216 0.9398 0.9827 0.9350 0.6371 0.6389 0.4958 0.6434 0.6665 0.7272 0.8646 0.8259 0.6533 0.4153 0.5983 0.4638 0.7058 0.8745 0.9687
0.166 9.0 1818 0.3127 0.7018 0.8110 0.9030 0.9725 0.7634 0.8258 0.6332 0.7766 0.8286 0.8336 0.9274 0.9101 0.8199 0.5639 0.7524 0.5788 0.8569 0.9506 0.9828 0.9342 0.6427 0.6429 0.4986 0.6563 0.6966 0.7359 0.8724 0.8262 0.6580 0.4284 0.6059 0.4654 0.7232 0.8738 0.9687
0.157 10.0 2020 0.3267 0.7024 0.8168 0.9020 0.9604 0.8061 0.7791 0.6743 0.8065 0.8319 0.8585 0.9401 0.9024 0.7924 0.5971 0.7363 0.5982 0.8637 0.9412 0.9811 0.9341 0.6525 0.6635 0.5021 0.6506 0.6902 0.7353 0.8638 0.8235 0.6649 0.4250 0.6045 0.4686 0.7166 0.8754 0.9686
0.1543 11.0 2222 0.3260 0.7009 0.8131 0.9029 0.9753 0.7483 0.8429 0.6313 0.7917 0.8380 0.8368 0.9411 0.8959 0.7904 0.5871 0.7533 0.5913 0.8523 0.9509 0.9824 0.9341 0.6377 0.6377 0.4966 0.6583 0.6951 0.7325 0.8603 0.8235 0.6620 0.4303 0.6088 0.4709 0.7213 0.8763 0.9689
0.1474 12.0 2424 0.3394 0.7054 0.8179 0.9028 0.9585 0.8439 0.8303 0.6732 0.7800 0.8231 0.8755 0.9453 0.8985 0.7896 0.5814 0.7545 0.5047 0.8994 0.9452 0.9842 0.9351 0.6593 0.6707 0.5076 0.6632 0.6995 0.7427 0.8737 0.8403 0.6595 0.4371 0.6068 0.4317 0.7151 0.8752 0.9693
0.1365 13.0 2626 0.3347 0.7121 0.8220 0.9063 0.9706 0.7858 0.8210 0.6734 0.8003 0.8490 0.8637 0.9461 0.9108 0.7885 0.6000 0.7537 0.5916 0.8648 0.9510 0.9815 0.9387 0.6604 0.6668 0.5029 0.6702 0.7067 0.7480 0.8793 0.8403 0.6713 0.4449 0.6162 0.4739 0.7280 0.8774 0.9689
0.1301 14.0 2828 0.3412 0.7148 0.8159 0.9073 0.9734 0.7725 0.8092 0.6343 0.7902 0.8236 0.8692 0.9424 0.9058 0.8016 0.5709 0.7403 0.6210 0.8633 0.9524 0.9838 0.9384 0.6549 0.6718 0.5043 0.6695 0.7121 0.7544 0.8832 0.8444 0.6744 0.4519 0.6165 0.4869 0.7252 0.8787 0.9696
0.1216 15.0 3030 0.3623 0.7137 0.8187 0.9071 0.9686 0.8045 0.8266 0.6700 0.8050 0.8177 0.8601 0.9466 0.9172 0.8057 0.5325 0.7487 0.5887 0.8770 0.9476 0.9830 0.9390 0.6654 0.6707 0.5055 0.6697 0.7121 0.7563 0.8813 0.8468 0.6702 0.4311 0.6210 0.4756 0.7260 0.8795 0.9699
0.1198 16.0 3232 0.3660 0.7154 0.8230 0.9073 0.9703 0.8029 0.8357 0.6354 0.8038 0.8289 0.8623 0.9484 0.9166 0.8085 0.6043 0.7602 0.5904 0.8719 0.9444 0.9839 0.9385 0.6613 0.6717 0.4995 0.6695 0.7130 0.7542 0.8825 0.8511 0.6757 0.4554 0.6205 0.4779 0.7279 0.8782 0.9699
0.1264 17.0 3434 0.3688 0.7093 0.8161 0.9037 0.9631 0.7818 0.7960 0.7013 0.8166 0.8203 0.8650 0.9403 0.9087 0.7833 0.5580 0.7223 0.5917 0.8796 0.9515 0.9789 0.9339 0.6401 0.6720 0.4989 0.6648 0.7075 0.7501 0.8823 0.8481 0.6613 0.4408 0.6131 0.4704 0.7195 0.8767 0.9687
0.137 18.0 3636 0.3583 0.7079 0.8131 0.9048 0.9699 0.7900 0.8168 0.6048 0.8107 0.8355 0.8609 0.9340 0.9144 0.7944 0.4969 0.7738 0.6219 0.8578 0.9431 0.9840 0.9366 0.6536 0.6658 0.5010 0.6672 0.7036 0.7478 0.8792 0.8352 0.6600 0.4237 0.6080 0.4789 0.7174 0.8782 0.9695
0.1243 19.0 3838 0.3671 0.7050 0.8140 0.9045 0.9728 0.7609 0.8216 0.6357 0.7975 0.8456 0.8801 0.9328 0.8930 0.7846 0.5696 0.7238 0.5972 0.8748 0.9539 0.9808 0.9370 0.6470 0.6367 0.4900 0.6577 0.7019 0.7449 0.8665 0.8285 0.6600 0.4545 0.6079 0.4741 0.7283 0.8765 0.9693
0.1139 20.0 4040 0.3773 0.7114 0.8169 0.9063 0.9745 0.7752 0.8003 0.6377 0.7977 0.8502 0.8648 0.9407 0.9017 0.8282 0.5676 0.7387 0.6023 0.8613 0.9465 0.9837 0.9388 0.6584 0.6593 0.5051 0.6649 0.7108 0.7508 0.8775 0.8388 0.6628 0.4501 0.6150 0.4735 0.7273 0.8790 0.9698
0.107 21.0 4242 0.3894 0.7156 0.8208 0.9075 0.9698 0.8161 0.8183 0.6471 0.7960 0.8217 0.8852 0.9457 0.9072 0.8157 0.5433 0.7691 0.6085 0.8623 0.9432 0.9830 0.9399 0.6685 0.6703 0.5096 0.6752 0.7144 0.7542 0.8816 0.8473 0.6670 0.4446 0.6210 0.4815 0.7263 0.8791 0.9701
0.1031 22.0 4444 0.4017 0.7151 0.8233 0.9073 0.9691 0.8062 0.8372 0.6409 0.8117 0.8351 0.8776 0.9459 0.9121 0.8086 0.5799 0.7538 0.6018 0.8625 0.9452 0.9853 0.9387 0.6634 0.6669 0.5031 0.6714 0.7145 0.7572 0.8839 0.8469 0.6665 0.4540 0.6171 0.4809 0.7264 0.8800 0.9702
0.0999 23.0 4646 0.4116 0.7157 0.8202 0.9077 0.9743 0.7844 0.8315 0.6443 0.7960 0.8279 0.8840 0.9517 0.8990 0.8163 0.5712 0.7390 0.6063 0.8684 0.9476 0.9821 0.9395 0.6627 0.6683 0.5113 0.6759 0.7177 0.7575 0.8790 0.8417 0.6645 0.4521 0.6198 0.4838 0.7280 0.8797 0.9703
0.0963 24.0 4848 0.4264 0.7153 0.8177 0.9074 0.9754 0.7781 0.8163 0.6371 0.8127 0.8306 0.8785 0.9477 0.9128 0.7785 0.5563 0.7605 0.5915 0.8720 0.9529 0.9827 0.9389 0.6555 0.6780 0.5042 0.6689 0.7179 0.7590 0.8842 0.8467 0.6665 0.4506 0.6248 0.4772 0.7244 0.8784 0.9703
0.096 25.0 5050 0.4291 0.7157 0.8208 0.9078 0.9727 0.7987 0.8335 0.6217 0.8103 0.8348 0.8773 0.9458 0.9083 0.8045 0.5717 0.7563 0.5977 0.8668 0.9508 0.9825 0.9392 0.6624 0.6659 0.5007 0.6680 0.7168 0.7586 0.8855 0.8497 0.6674 0.4571 0.6224 0.4799 0.7274 0.8794 0.9702
0.0926 26.0 5252 0.4360 0.7169 0.8230 0.9081 0.9721 0.7966 0.8304 0.6249 0.8104 0.8352 0.8746 0.9530 0.9080 0.8115 0.5851 0.7736 0.5962 0.8616 0.9495 0.9848 0.9396 0.6643 0.6679 0.5000 0.6711 0.7208 0.7626 0.8836 0.8481 0.6672 0.4583 0.6277 0.4808 0.7288 0.8794 0.9704
0.0903 27.0 5454 0.4453 0.7166 0.8226 0.9077 0.9726 0.7853 0.8258 0.6282 0.8004 0.8374 0.8824 0.9457 0.9191 0.8191 0.5907 0.7600 0.5891 0.8771 0.9470 0.9820 0.9392 0.6602 0.6705 0.5029 0.6762 0.7191 0.7619 0.8867 0.8472 0.6657 0.4559 0.6253 0.4776 0.7277 0.8797 0.9702
0.093 28.0 5656 0.4438 0.7152 0.8195 0.9072 0.9696 0.7980 0.8227 0.6421 0.7945 0.8561 0.8705 0.9487 0.9011 0.8025 0.5575 0.7460 0.5975 0.8694 0.9504 0.9847 0.9372 0.6581 0.6650 0.5061 0.6746 0.7209 0.7549 0.8822 0.8461 0.6640 0.4536 0.6201 0.4814 0.7290 0.8786 0.9706
0.0883 29.0 5858 0.4514 0.7173 0.8231 0.9079 0.9714 0.7987 0.8199 0.6475 0.8239 0.8308 0.8722 0.9480 0.9129 0.8073 0.5782 0.7659 0.5917 0.8685 0.9516 0.9807 0.9395 0.6652 0.6729 0.5059 0.6700 0.7222 0.7621 0.8844 0.8489 0.6674 0.4604 0.6219 0.4785 0.7282 0.8790 0.9700
0.0857 30.0 6060 0.4478 0.7175 0.8225 0.9081 0.9691 0.8046 0.8208 0.6461 0.8021 0.8401 0.8844 0.9456 0.9117 0.8035 0.5546 0.7730 0.6106 0.8596 0.9510 0.9836 0.9387 0.6648 0.6688 0.5043 0.6730 0.7209 0.7629 0.8874 0.8509 0.6693 0.4518 0.6229 0.4867 0.7293 0.8788 0.9703
0.0852 31.0 6262 0.4704 0.7165 0.8207 0.9078 0.9735 0.7878 0.8214 0.6576 0.8043 0.8423 0.8666 0.9484 0.9023 0.8110 0.5632 0.7524 0.5969 0.8748 0.9448 0.9844 0.9387 0.6608 0.6739 0.5054 0.6715 0.7218 0.7640 0.8829 0.8412 0.6700 0.4513 0.6232 0.4796 0.7300 0.8799 0.9706
0.0813 32.0 6464 0.4642 0.7173 0.8239 0.9080 0.9698 0.7989 0.8283 0.6422 0.8068 0.8390 0.8813 0.9479 0.9081 0.8147 0.5751 0.7772 0.5907 0.8678 0.9499 0.9842 0.9388 0.6639 0.6757 0.5069 0.6708 0.7210 0.7603 0.8852 0.8482 0.6683 0.4588 0.6207 0.4786 0.7296 0.8797 0.9708
0.0807 33.0 6666 0.4811 0.7177 0.8218 0.9079 0.9710 0.8003 0.8216 0.6509 0.7969 0.8468 0.8685 0.9483 0.9088 0.8122 0.5717 0.7543 0.5995 0.8662 0.9477 0.9843 0.9387 0.6627 0.6763 0.5087 0.6744 0.7237 0.7632 0.8847 0.8476 0.6656 0.4574 0.6202 0.4806 0.7295 0.8799 0.9707
0.0804 34.0 6868 0.4824 0.7176 0.8220 0.9079 0.9699 0.7993 0.8269 0.6392 0.8077 0.8321 0.8793 0.9479 0.9114 0.8028 0.5786 0.7535 0.5934 0.8784 0.9469 0.9849 0.9384 0.6621 0.6708 0.5042 0.6736 0.7208 0.7631 0.8879 0.8515 0.6696 0.4597 0.6227 0.4789 0.7280 0.8794 0.9706
0.0769 35.0 7070 0.4960 0.7178 0.8214 0.9081 0.9694 0.8053 0.8223 0.6416 0.7990 0.8403 0.8779 0.9476 0.9132 0.8100 0.5511 0.7574 0.6043 0.8715 0.9481 0.9829 0.9386 0.6632 0.6749 0.5031 0.6727 0.7218 0.7654 0.8878 0.8495 0.6725 0.4490 0.6229 0.4840 0.7285 0.8798 0.9706
0.0776 36.0 7272 0.4918 0.7168 0.8219 0.9077 0.9697 0.8043 0.8247 0.6536 0.8009 0.8346 0.8787 0.9517 0.9077 0.8046 0.5543 0.7730 0.5920 0.8680 0.9473 0.9847 0.9387 0.6631 0.6732 0.5020 0.6755 0.7227 0.7651 0.8844 0.8483 0.6669 0.4485 0.6235 0.4788 0.7277 0.8795 0.9704
0.0782 37.0 7474 0.4938 0.7171 0.8237 0.9081 0.9731 0.7905 0.8343 0.6444 0.8066 0.8508 0.8759 0.9471 0.9091 0.8169 0.5733 0.7636 0.5973 0.8642 0.9479 0.9843 0.9392 0.6621 0.6678 0.5046 0.6731 0.7221 0.7623 0.8866 0.8501 0.6702 0.4521 0.6232 0.4812 0.7300 0.8791 0.9706
0.0758 38.0 7676 0.5168 0.7151 0.8202 0.9069 0.9760 0.7477 0.8282 0.6616 0.8080 0.8463 0.8742 0.9456 0.9139 0.8158 0.5488 0.7629 0.5967 0.8654 0.9481 0.9845 0.9359 0.6395 0.6683 0.5066 0.6746 0.7230 0.7636 0.8883 0.8498 0.6677 0.4439 0.6222 0.4794 0.7285 0.8797 0.9706
0.0745 39.0 7878 0.5100 0.7173 0.8203 0.9081 0.9725 0.7948 0.8194 0.6488 0.8033 0.8417 0.8719 0.9457 0.9111 0.8140 0.5465 0.7558 0.5942 0.8723 0.9471 0.9850 0.9388 0.6622 0.6752 0.5043 0.6732 0.7239 0.7649 0.8869 0.8501 0.6683 0.4472 0.6225 0.4804 0.7295 0.8793 0.9708
0.0719 40.0 8080 0.5147 0.7181 0.8233 0.9083 0.9706 0.8003 0.8253 0.6494 0.8033 0.8491 0.8741 0.9453 0.9125 0.8069 0.5725 0.7652 0.5952 0.8685 0.9493 0.9847 0.9391 0.6636 0.6737 0.5047 0.6761 0.7237 0.7627 0.8859 0.8501 0.6725 0.4535 0.6223 0.4818 0.7291 0.8796 0.9706
0.0731 41.0 8282 0.5221 0.7173 0.8217 0.9083 0.9726 0.7939 0.8299 0.6356 0.8109 0.8419 0.8685 0.9448 0.9132 0.8095 0.5581 0.7649 0.6038 0.8674 0.9478 0.9846 0.9393 0.6625 0.6710 0.5008 0.6714 0.7237 0.7655 0.8859 0.8475 0.6690 0.4523 0.6234 0.4846 0.7296 0.8798 0.9708
0.0723 42.0 8484 0.5245 0.7176 0.8230 0.9084 0.9711 0.7990 0.8275 0.6417 0.8100 0.8396 0.8831 0.9465 0.9126 0.8083 0.5616 0.7649 0.6050 0.8640 0.9497 0.9839 0.9396 0.6645 0.6709 0.5026 0.6707 0.7224 0.7624 0.8864 0.8493 0.6709 0.4531 0.6237 0.4845 0.7304 0.8794 0.9706
0.0706 43.0 8686 0.5327 0.7176 0.8226 0.9081 0.9710 0.7981 0.8270 0.6415 0.8121 0.8409 0.8774 0.9466 0.9109 0.8068 0.5685 0.7562 0.6078 0.8638 0.9498 0.9833 0.9389 0.6618 0.6714 0.5029 0.6722 0.7222 0.7637 0.8858 0.8482 0.6700 0.4576 0.6225 0.4857 0.7297 0.8788 0.9706
0.0709 44.0 8888 0.5422 0.7179 0.8229 0.9082 0.9721 0.7964 0.8261 0.6365 0.8063 0.8440 0.8737 0.9464 0.9125 0.8077 0.5823 0.7622 0.5988 0.8687 0.9480 0.9843 0.9394 0.6630 0.6712 0.5026 0.6733 0.7231 0.7639 0.8876 0.8503 0.6704 0.4573 0.6245 0.4814 0.7285 0.8794 0.9707
0.0683 45.0 9090 0.5411 0.7182 0.8223 0.9083 0.9722 0.7947 0.8254 0.6432 0.8020 0.8436 0.8730 0.9457 0.9137 0.8080 0.5735 0.7592 0.6024 0.8688 0.9483 0.9836 0.9390 0.6613 0.6734 0.5018 0.6729 0.7237 0.7636 0.8871 0.8498 0.6718 0.4586 0.6245 0.4837 0.7292 0.8796 0.9707
0.0686 46.0 9292 0.5469 0.7182 0.8228 0.9083 0.9715 0.7973 0.8247 0.6366 0.8079 0.8475 0.8720 0.9456 0.9139 0.8086 0.5793 0.7554 0.6059 0.8661 0.9495 0.9834 0.9388 0.6614 0.6704 0.5012 0.6729 0.7241 0.7626 0.8875 0.8501 0.6724 0.4604 0.6232 0.4853 0.7301 0.8795 0.9707
0.0673 47.0 9494 0.5504 0.7178 0.8220 0.9082 0.9735 0.7857 0.8243 0.6351 0.8083 0.8416 0.8741 0.9473 0.9124 0.8112 0.5724 0.7629 0.6056 0.8660 0.9475 0.9847 0.9389 0.6585 0.6707 0.5021 0.6726 0.7233 0.7642 0.8870 0.8504 0.6718 0.4571 0.6235 0.4844 0.7298 0.8795 0.9707
0.0667 48.0 9696 0.5545 0.7179 0.8221 0.9083 0.9722 0.7925 0.8240 0.6389 0.8065 0.8420 0.8738 0.9461 0.9132 0.8114 0.5671 0.7628 0.6023 0.8671 0.9491 0.9843 0.9389 0.6613 0.6711 0.5024 0.6729 0.7229 0.7634 0.8876 0.8501 0.6722 0.4564 0.6232 0.4844 0.7297 0.8794 0.9707
0.0677 49.0 9898 0.5565 0.7179 0.8224 0.9083 0.9719 0.7950 0.8279 0.6404 0.8029 0.8418 0.8759 0.9477 0.9114 0.8106 0.5707 0.7605 0.6001 0.8690 0.9480 0.9844 0.9390 0.6622 0.6699 0.5027 0.6732 0.7231 0.7639 0.8872 0.8502 0.6717 0.4576 0.6238 0.4826 0.7293 0.8795 0.9707
0.0674 50.0 10100 0.5563 0.7180 0.8224 0.9083 0.9716 0.7949 0.8240 0.6408 0.8057 0.8434 0.8762 0.9451 0.9122 0.8112 0.5699 0.7605 0.6010 0.8678 0.9495 0.9841 0.9391 0.6620 0.6707 0.5025 0.6726 0.7228 0.7637 0.8882 0.8506 0.6721 0.4571 0.6238 0.4831 0.7293 0.8792 0.9707

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
84.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for izzako/segformer-b5-finetuned-IDD-L2_v2

Base model

nvidia/mit-b5
Finetuned
(49)
this model