segformer-b4-finetuned-IDD-L2_v2
This model is a fine-tuned version of nvidia/mit-b4 on the IDD 20K Semantic Segmentation Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4199
- Mean Iou: 0.7150
- Mean Accuracy: 0.8193
- Overall Accuracy: 0.9075
- Accuracy Road: 0.9704
- Accuracy Parking: 0.7964
- Accuracy Sidewalk: 0.8037
- Accuracy Rail track: 0.6379
- Accuracy Person: 0.8041
- Accuracy Rider: 0.8391
- Accuracy Motorcycle: 0.8711
- Accuracy Autorickshaw: 0.9431
- Accuracy Truck: 0.9116
- Accuracy Curb: 0.8175
- Accuracy Fence: 0.5566
- Accuracy Billboard: 0.7593
- Accuracy Pole: 0.5995
- Accuracy Building: 0.8647
- Accuracy Vegetation: 0.9506
- Accuracy Sky: 0.9837
- Iou Road: 0.9380
- Iou Parking: 0.6587
- Iou Sidewalk: 0.6591
- Iou Rail track: 0.5041
- Iou Person: 0.6800
- Iou Rider: 0.7182
- Iou Motorcycle: 0.7558
- Iou Autorickshaw: 0.8824
- Iou Truck: 0.8412
- Iou Curb: 0.6810
- Iou Fence: 0.4420
- Iou Billboard: 0.6199
- Iou Pole: 0.4787
- Iou Building: 0.7301
- Iou Vegetation: 0.8798
- Iou Sky: 0.9704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Road | Accuracy Parking | Accuracy Sidewalk | Accuracy Rail track | Accuracy Person | Accuracy Rider | Accuracy Motorcycle | Accuracy Autorickshaw | Accuracy Truck | Accuracy Curb | Accuracy Fence | Accuracy Billboard | Accuracy Pole | Accuracy Building | Accuracy Vegetation | Accuracy Sky | Iou Road | Iou Parking | Iou Sidewalk | Iou Rail track | Iou Person | Iou Rider | Iou Motorcycle | Iou Autorickshaw | Iou Truck | Iou Curb | Iou Fence | Iou Billboard | Iou Pole | Iou Building | Iou Vegetation | Iou Sky |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3232 | 1.0 | 403 | 0.3421 | 0.6363 | 0.7588 | 0.8789 | 0.9456 | 0.7825 | 0.6804 | 0.5401 | 0.7444 | 0.7825 | 0.7971 | 0.8830 | 0.9010 | 0.7907 | 0.4003 | 0.6603 | 0.4316 | 0.8796 | 0.9514 | 0.9711 | 0.9181 | 0.6123 | 0.5711 | 0.4297 | 0.5641 | 0.6018 | 0.6655 | 0.7989 | 0.7427 | 0.5943 | 0.3208 | 0.5247 | 0.3546 | 0.6657 | 0.8550 | 0.9614 |
0.2743 | 2.0 | 806 | 0.3112 | 0.6670 | 0.7944 | 0.8897 | 0.9468 | 0.8278 | 0.8108 | 0.5271 | 0.7564 | 0.8043 | 0.8322 | 0.9343 | 0.8851 | 0.7830 | 0.5247 | 0.7534 | 0.5963 | 0.8113 | 0.9392 | 0.9774 | 0.9211 | 0.6279 | 0.5911 | 0.4497 | 0.5987 | 0.6241 | 0.6907 | 0.8423 | 0.7847 | 0.6343 | 0.3785 | 0.5673 | 0.4378 | 0.6921 | 0.8670 | 0.9654 |
0.2627 | 3.0 | 1209 | 0.2994 | 0.6779 | 0.7857 | 0.8951 | 0.9717 | 0.7678 | 0.7806 | 0.6031 | 0.7208 | 0.7611 | 0.7792 | 0.9423 | 0.8692 | 0.7819 | 0.5793 | 0.6944 | 0.5309 | 0.8538 | 0.9555 | 0.9794 | 0.9331 | 0.6395 | 0.6478 | 0.4797 | 0.6203 | 0.6333 | 0.6912 | 0.8494 | 0.8087 | 0.6316 | 0.3783 | 0.5788 | 0.4226 | 0.7052 | 0.8611 | 0.9660 |
0.2527 | 4.0 | 1612 | 0.3124 | 0.6736 | 0.7825 | 0.8932 | 0.9673 | 0.8051 | 0.8018 | 0.5394 | 0.7225 | 0.7694 | 0.8487 | 0.9610 | 0.7878 | 0.7202 | 0.5027 | 0.7432 | 0.5638 | 0.8606 | 0.9453 | 0.9808 | 0.9318 | 0.6447 | 0.6291 | 0.4625 | 0.6229 | 0.6499 | 0.7082 | 0.7923 | 0.7447 | 0.6308 | 0.4085 | 0.5863 | 0.4323 | 0.6961 | 0.8705 | 0.9671 |
0.2129 | 5.0 | 2015 | 0.3007 | 0.6909 | 0.8002 | 0.8993 | 0.9617 | 0.8104 | 0.8030 | 0.5452 | 0.8135 | 0.8201 | 0.8506 | 0.9398 | 0.8892 | 0.7783 | 0.4935 | 0.7488 | 0.5243 | 0.8880 | 0.9526 | 0.9837 | 0.9332 | 0.6515 | 0.6486 | 0.4671 | 0.6401 | 0.6730 | 0.7200 | 0.8672 | 0.8252 | 0.6531 | 0.4073 | 0.5976 | 0.4299 | 0.7026 | 0.8705 | 0.9676 |
0.2095 | 6.0 | 2418 | 0.3021 | 0.6959 | 0.7995 | 0.9008 | 0.9626 | 0.8123 | 0.7592 | 0.6501 | 0.7396 | 0.8123 | 0.8521 | 0.9405 | 0.9022 | 0.7873 | 0.5159 | 0.7070 | 0.5396 | 0.8733 | 0.9550 | 0.9835 | 0.9326 | 0.6431 | 0.6494 | 0.4957 | 0.6463 | 0.6757 | 0.7275 | 0.8611 | 0.8230 | 0.6597 | 0.4194 | 0.5993 | 0.4457 | 0.7180 | 0.8698 | 0.9679 |
0.1906 | 7.0 | 2821 | 0.3018 | 0.6986 | 0.8095 | 0.9018 | 0.9677 | 0.7849 | 0.7730 | 0.6484 | 0.7610 | 0.8164 | 0.8760 | 0.9270 | 0.9075 | 0.7919 | 0.5954 | 0.7476 | 0.5649 | 0.8528 | 0.9527 | 0.9844 | 0.9345 | 0.6475 | 0.6453 | 0.4947 | 0.6535 | 0.6774 | 0.7330 | 0.8712 | 0.8289 | 0.6530 | 0.4239 | 0.5989 | 0.4555 | 0.7184 | 0.8731 | 0.9683 |
0.1757 | 8.0 | 3224 | 0.3220 | 0.6988 | 0.8086 | 0.9022 | 0.9709 | 0.8020 | 0.8179 | 0.6339 | 0.7666 | 0.8013 | 0.8672 | 0.9300 | 0.9026 | 0.8163 | 0.5430 | 0.7349 | 0.5659 | 0.8597 | 0.9446 | 0.9815 | 0.9375 | 0.6562 | 0.6483 | 0.5014 | 0.6540 | 0.6825 | 0.7385 | 0.8605 | 0.8027 | 0.6652 | 0.4193 | 0.6021 | 0.4517 | 0.7154 | 0.8760 | 0.9690 |
0.1609 | 9.0 | 3627 | 0.3290 | 0.7031 | 0.8145 | 0.9020 | 0.9576 | 0.8167 | 0.8228 | 0.6573 | 0.7885 | 0.8251 | 0.8611 | 0.9455 | 0.8984 | 0.8148 | 0.5296 | 0.7482 | 0.5730 | 0.8655 | 0.9438 | 0.9845 | 0.9309 | 0.6443 | 0.6498 | 0.5032 | 0.6633 | 0.6978 | 0.7419 | 0.8697 | 0.8278 | 0.6664 | 0.4238 | 0.6099 | 0.4607 | 0.7147 | 0.8766 | 0.9694 |
0.1455 | 10.0 | 4030 | 0.3234 | 0.7075 | 0.8158 | 0.9051 | 0.9709 | 0.7877 | 0.8051 | 0.6510 | 0.7843 | 0.8262 | 0.8581 | 0.9397 | 0.9139 | 0.8015 | 0.5653 | 0.7671 | 0.5900 | 0.8619 | 0.9454 | 0.9842 | 0.9375 | 0.6576 | 0.6413 | 0.5001 | 0.6722 | 0.7057 | 0.7459 | 0.8741 | 0.8379 | 0.6710 | 0.4329 | 0.6055 | 0.4692 | 0.7216 | 0.8786 | 0.9696 |
0.1442 | 11.0 | 4433 | 0.3395 | 0.7110 | 0.8123 | 0.9057 | 0.9701 | 0.7943 | 0.7823 | 0.6195 | 0.7953 | 0.8308 | 0.8577 | 0.9463 | 0.9047 | 0.8048 | 0.5494 | 0.7363 | 0.6055 | 0.8693 | 0.9459 | 0.9841 | 0.9369 | 0.6520 | 0.6611 | 0.4967 | 0.6758 | 0.7119 | 0.7499 | 0.8777 | 0.8401 | 0.6752 | 0.4414 | 0.6124 | 0.4731 | 0.7225 | 0.8801 | 0.9695 |
0.1312 | 12.0 | 4836 | 0.3508 | 0.7094 | 0.8143 | 0.9052 | 0.9698 | 0.7827 | 0.8066 | 0.6213 | 0.7915 | 0.8336 | 0.8708 | 0.9370 | 0.9100 | 0.8015 | 0.5581 | 0.7499 | 0.5969 | 0.8652 | 0.9509 | 0.9836 | 0.9365 | 0.6492 | 0.6539 | 0.4960 | 0.6763 | 0.7095 | 0.7501 | 0.8767 | 0.8344 | 0.6771 | 0.4347 | 0.6143 | 0.4698 | 0.7251 | 0.8769 | 0.9698 |
0.1302 | 13.0 | 5239 | 0.3644 | 0.7119 | 0.8162 | 0.9063 | 0.9713 | 0.7738 | 0.8040 | 0.6611 | 0.7956 | 0.8497 | 0.8647 | 0.9418 | 0.9090 | 0.8067 | 0.5416 | 0.7426 | 0.5875 | 0.8732 | 0.9526 | 0.9831 | 0.9377 | 0.6528 | 0.6609 | 0.5044 | 0.6768 | 0.7091 | 0.7507 | 0.8791 | 0.8385 | 0.6829 | 0.4343 | 0.6197 | 0.4711 | 0.7236 | 0.8783 | 0.9699 |
0.1252 | 14.0 | 5642 | 0.3692 | 0.7105 | 0.8179 | 0.9057 | 0.9724 | 0.7785 | 0.8000 | 0.6623 | 0.8099 | 0.8213 | 0.8761 | 0.9434 | 0.8984 | 0.8075 | 0.5618 | 0.7751 | 0.5945 | 0.8508 | 0.9493 | 0.9851 | 0.9381 | 0.6544 | 0.6539 | 0.5028 | 0.6744 | 0.7074 | 0.7503 | 0.8758 | 0.8317 | 0.6760 | 0.4457 | 0.6159 | 0.4716 | 0.7201 | 0.8795 | 0.9698 |
0.1179 | 15.0 | 6045 | 0.3840 | 0.7141 | 0.8184 | 0.9070 | 0.9706 | 0.7989 | 0.8076 | 0.6553 | 0.7914 | 0.8402 | 0.8607 | 0.9431 | 0.9118 | 0.8123 | 0.5572 | 0.7534 | 0.5840 | 0.8765 | 0.9474 | 0.9831 | 0.9380 | 0.6597 | 0.6589 | 0.5057 | 0.6784 | 0.7124 | 0.7551 | 0.8787 | 0.8391 | 0.6866 | 0.4467 | 0.6210 | 0.4728 | 0.7225 | 0.8802 | 0.9704 |
0.1149 | 16.0 | 6448 | 0.3896 | 0.7134 | 0.8183 | 0.9071 | 0.9715 | 0.7917 | 0.8146 | 0.6380 | 0.8009 | 0.8285 | 0.8722 | 0.9430 | 0.9112 | 0.8158 | 0.5468 | 0.7617 | 0.5978 | 0.8662 | 0.9498 | 0.9827 | 0.9384 | 0.6598 | 0.6563 | 0.5029 | 0.6783 | 0.7142 | 0.7545 | 0.8813 | 0.8408 | 0.6792 | 0.4346 | 0.6219 | 0.4775 | 0.7247 | 0.8801 | 0.9702 |
0.1101 | 17.0 | 6851 | 0.3954 | 0.7141 | 0.8198 | 0.9073 | 0.9718 | 0.7910 | 0.8139 | 0.6499 | 0.8004 | 0.8303 | 0.8739 | 0.9412 | 0.9122 | 0.8221 | 0.5549 | 0.7654 | 0.5929 | 0.8650 | 0.9493 | 0.9832 | 0.9385 | 0.6587 | 0.6547 | 0.5056 | 0.6806 | 0.7166 | 0.7550 | 0.8814 | 0.8395 | 0.6796 | 0.4414 | 0.6181 | 0.4756 | 0.7299 | 0.8802 | 0.9702 |
0.1095 | 18.0 | 7254 | 0.4032 | 0.7155 | 0.8201 | 0.9074 | 0.9678 | 0.8052 | 0.7992 | 0.6393 | 0.8075 | 0.8422 | 0.8699 | 0.9423 | 0.9094 | 0.8143 | 0.5625 | 0.7633 | 0.5948 | 0.8693 | 0.9512 | 0.9839 | 0.9373 | 0.6588 | 0.6628 | 0.5061 | 0.6808 | 0.7171 | 0.7553 | 0.8816 | 0.8412 | 0.6823 | 0.4440 | 0.6215 | 0.4785 | 0.7307 | 0.8796 | 0.9704 |
0.1066 | 19.0 | 7657 | 0.4130 | 0.7146 | 0.8192 | 0.9074 | 0.9693 | 0.7956 | 0.8023 | 0.6416 | 0.8124 | 0.8361 | 0.8702 | 0.9434 | 0.9117 | 0.8154 | 0.5534 | 0.7545 | 0.5971 | 0.8684 | 0.9509 | 0.9842 | 0.9380 | 0.6581 | 0.6587 | 0.5037 | 0.6791 | 0.7181 | 0.7561 | 0.8825 | 0.8409 | 0.6808 | 0.4397 | 0.6204 | 0.4779 | 0.7299 | 0.8798 | 0.9705 |
0.0992 | 20.0 | 8060 | 0.4199 | 0.7150 | 0.8193 | 0.9075 | 0.9704 | 0.7964 | 0.8037 | 0.6379 | 0.8041 | 0.8391 | 0.8711 | 0.9431 | 0.9116 | 0.8175 | 0.5566 | 0.7593 | 0.5995 | 0.8647 | 0.9506 | 0.9837 | 0.9380 | 0.6587 | 0.6591 | 0.5041 | 0.6800 | 0.7182 | 0.7558 | 0.8824 | 0.8412 | 0.6810 | 0.4420 | 0.6199 | 0.4787 | 0.7301 | 0.8798 | 0.9704 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for izzako/segformer-b4-finetuned-IDD-L2_v2
Base model
nvidia/mit-b4