Visualize in Weights & Biases

segformer-b4-finetuned-IDD-L2_v2

This model is a fine-tuned version of nvidia/mit-b4 on the IDD 20K Semantic Segmentation Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4199
  • Mean Iou: 0.7150
  • Mean Accuracy: 0.8193
  • Overall Accuracy: 0.9075
  • Accuracy Road: 0.9704
  • Accuracy Parking: 0.7964
  • Accuracy Sidewalk: 0.8037
  • Accuracy Rail track: 0.6379
  • Accuracy Person: 0.8041
  • Accuracy Rider: 0.8391
  • Accuracy Motorcycle: 0.8711
  • Accuracy Autorickshaw: 0.9431
  • Accuracy Truck: 0.9116
  • Accuracy Curb: 0.8175
  • Accuracy Fence: 0.5566
  • Accuracy Billboard: 0.7593
  • Accuracy Pole: 0.5995
  • Accuracy Building: 0.8647
  • Accuracy Vegetation: 0.9506
  • Accuracy Sky: 0.9837
  • Iou Road: 0.9380
  • Iou Parking: 0.6587
  • Iou Sidewalk: 0.6591
  • Iou Rail track: 0.5041
  • Iou Person: 0.6800
  • Iou Rider: 0.7182
  • Iou Motorcycle: 0.7558
  • Iou Autorickshaw: 0.8824
  • Iou Truck: 0.8412
  • Iou Curb: 0.6810
  • Iou Fence: 0.4420
  • Iou Billboard: 0.6199
  • Iou Pole: 0.4787
  • Iou Building: 0.7301
  • Iou Vegetation: 0.8798
  • Iou Sky: 0.9704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Road Accuracy Parking Accuracy Sidewalk Accuracy Rail track Accuracy Person Accuracy Rider Accuracy Motorcycle Accuracy Autorickshaw Accuracy Truck Accuracy Curb Accuracy Fence Accuracy Billboard Accuracy Pole Accuracy Building Accuracy Vegetation Accuracy Sky Iou Road Iou Parking Iou Sidewalk Iou Rail track Iou Person Iou Rider Iou Motorcycle Iou Autorickshaw Iou Truck Iou Curb Iou Fence Iou Billboard Iou Pole Iou Building Iou Vegetation Iou Sky
0.3232 1.0 403 0.3421 0.6363 0.7588 0.8789 0.9456 0.7825 0.6804 0.5401 0.7444 0.7825 0.7971 0.8830 0.9010 0.7907 0.4003 0.6603 0.4316 0.8796 0.9514 0.9711 0.9181 0.6123 0.5711 0.4297 0.5641 0.6018 0.6655 0.7989 0.7427 0.5943 0.3208 0.5247 0.3546 0.6657 0.8550 0.9614
0.2743 2.0 806 0.3112 0.6670 0.7944 0.8897 0.9468 0.8278 0.8108 0.5271 0.7564 0.8043 0.8322 0.9343 0.8851 0.7830 0.5247 0.7534 0.5963 0.8113 0.9392 0.9774 0.9211 0.6279 0.5911 0.4497 0.5987 0.6241 0.6907 0.8423 0.7847 0.6343 0.3785 0.5673 0.4378 0.6921 0.8670 0.9654
0.2627 3.0 1209 0.2994 0.6779 0.7857 0.8951 0.9717 0.7678 0.7806 0.6031 0.7208 0.7611 0.7792 0.9423 0.8692 0.7819 0.5793 0.6944 0.5309 0.8538 0.9555 0.9794 0.9331 0.6395 0.6478 0.4797 0.6203 0.6333 0.6912 0.8494 0.8087 0.6316 0.3783 0.5788 0.4226 0.7052 0.8611 0.9660
0.2527 4.0 1612 0.3124 0.6736 0.7825 0.8932 0.9673 0.8051 0.8018 0.5394 0.7225 0.7694 0.8487 0.9610 0.7878 0.7202 0.5027 0.7432 0.5638 0.8606 0.9453 0.9808 0.9318 0.6447 0.6291 0.4625 0.6229 0.6499 0.7082 0.7923 0.7447 0.6308 0.4085 0.5863 0.4323 0.6961 0.8705 0.9671
0.2129 5.0 2015 0.3007 0.6909 0.8002 0.8993 0.9617 0.8104 0.8030 0.5452 0.8135 0.8201 0.8506 0.9398 0.8892 0.7783 0.4935 0.7488 0.5243 0.8880 0.9526 0.9837 0.9332 0.6515 0.6486 0.4671 0.6401 0.6730 0.7200 0.8672 0.8252 0.6531 0.4073 0.5976 0.4299 0.7026 0.8705 0.9676
0.2095 6.0 2418 0.3021 0.6959 0.7995 0.9008 0.9626 0.8123 0.7592 0.6501 0.7396 0.8123 0.8521 0.9405 0.9022 0.7873 0.5159 0.7070 0.5396 0.8733 0.9550 0.9835 0.9326 0.6431 0.6494 0.4957 0.6463 0.6757 0.7275 0.8611 0.8230 0.6597 0.4194 0.5993 0.4457 0.7180 0.8698 0.9679
0.1906 7.0 2821 0.3018 0.6986 0.8095 0.9018 0.9677 0.7849 0.7730 0.6484 0.7610 0.8164 0.8760 0.9270 0.9075 0.7919 0.5954 0.7476 0.5649 0.8528 0.9527 0.9844 0.9345 0.6475 0.6453 0.4947 0.6535 0.6774 0.7330 0.8712 0.8289 0.6530 0.4239 0.5989 0.4555 0.7184 0.8731 0.9683
0.1757 8.0 3224 0.3220 0.6988 0.8086 0.9022 0.9709 0.8020 0.8179 0.6339 0.7666 0.8013 0.8672 0.9300 0.9026 0.8163 0.5430 0.7349 0.5659 0.8597 0.9446 0.9815 0.9375 0.6562 0.6483 0.5014 0.6540 0.6825 0.7385 0.8605 0.8027 0.6652 0.4193 0.6021 0.4517 0.7154 0.8760 0.9690
0.1609 9.0 3627 0.3290 0.7031 0.8145 0.9020 0.9576 0.8167 0.8228 0.6573 0.7885 0.8251 0.8611 0.9455 0.8984 0.8148 0.5296 0.7482 0.5730 0.8655 0.9438 0.9845 0.9309 0.6443 0.6498 0.5032 0.6633 0.6978 0.7419 0.8697 0.8278 0.6664 0.4238 0.6099 0.4607 0.7147 0.8766 0.9694
0.1455 10.0 4030 0.3234 0.7075 0.8158 0.9051 0.9709 0.7877 0.8051 0.6510 0.7843 0.8262 0.8581 0.9397 0.9139 0.8015 0.5653 0.7671 0.5900 0.8619 0.9454 0.9842 0.9375 0.6576 0.6413 0.5001 0.6722 0.7057 0.7459 0.8741 0.8379 0.6710 0.4329 0.6055 0.4692 0.7216 0.8786 0.9696
0.1442 11.0 4433 0.3395 0.7110 0.8123 0.9057 0.9701 0.7943 0.7823 0.6195 0.7953 0.8308 0.8577 0.9463 0.9047 0.8048 0.5494 0.7363 0.6055 0.8693 0.9459 0.9841 0.9369 0.6520 0.6611 0.4967 0.6758 0.7119 0.7499 0.8777 0.8401 0.6752 0.4414 0.6124 0.4731 0.7225 0.8801 0.9695
0.1312 12.0 4836 0.3508 0.7094 0.8143 0.9052 0.9698 0.7827 0.8066 0.6213 0.7915 0.8336 0.8708 0.9370 0.9100 0.8015 0.5581 0.7499 0.5969 0.8652 0.9509 0.9836 0.9365 0.6492 0.6539 0.4960 0.6763 0.7095 0.7501 0.8767 0.8344 0.6771 0.4347 0.6143 0.4698 0.7251 0.8769 0.9698
0.1302 13.0 5239 0.3644 0.7119 0.8162 0.9063 0.9713 0.7738 0.8040 0.6611 0.7956 0.8497 0.8647 0.9418 0.9090 0.8067 0.5416 0.7426 0.5875 0.8732 0.9526 0.9831 0.9377 0.6528 0.6609 0.5044 0.6768 0.7091 0.7507 0.8791 0.8385 0.6829 0.4343 0.6197 0.4711 0.7236 0.8783 0.9699
0.1252 14.0 5642 0.3692 0.7105 0.8179 0.9057 0.9724 0.7785 0.8000 0.6623 0.8099 0.8213 0.8761 0.9434 0.8984 0.8075 0.5618 0.7751 0.5945 0.8508 0.9493 0.9851 0.9381 0.6544 0.6539 0.5028 0.6744 0.7074 0.7503 0.8758 0.8317 0.6760 0.4457 0.6159 0.4716 0.7201 0.8795 0.9698
0.1179 15.0 6045 0.3840 0.7141 0.8184 0.9070 0.9706 0.7989 0.8076 0.6553 0.7914 0.8402 0.8607 0.9431 0.9118 0.8123 0.5572 0.7534 0.5840 0.8765 0.9474 0.9831 0.9380 0.6597 0.6589 0.5057 0.6784 0.7124 0.7551 0.8787 0.8391 0.6866 0.4467 0.6210 0.4728 0.7225 0.8802 0.9704
0.1149 16.0 6448 0.3896 0.7134 0.8183 0.9071 0.9715 0.7917 0.8146 0.6380 0.8009 0.8285 0.8722 0.9430 0.9112 0.8158 0.5468 0.7617 0.5978 0.8662 0.9498 0.9827 0.9384 0.6598 0.6563 0.5029 0.6783 0.7142 0.7545 0.8813 0.8408 0.6792 0.4346 0.6219 0.4775 0.7247 0.8801 0.9702
0.1101 17.0 6851 0.3954 0.7141 0.8198 0.9073 0.9718 0.7910 0.8139 0.6499 0.8004 0.8303 0.8739 0.9412 0.9122 0.8221 0.5549 0.7654 0.5929 0.8650 0.9493 0.9832 0.9385 0.6587 0.6547 0.5056 0.6806 0.7166 0.7550 0.8814 0.8395 0.6796 0.4414 0.6181 0.4756 0.7299 0.8802 0.9702
0.1095 18.0 7254 0.4032 0.7155 0.8201 0.9074 0.9678 0.8052 0.7992 0.6393 0.8075 0.8422 0.8699 0.9423 0.9094 0.8143 0.5625 0.7633 0.5948 0.8693 0.9512 0.9839 0.9373 0.6588 0.6628 0.5061 0.6808 0.7171 0.7553 0.8816 0.8412 0.6823 0.4440 0.6215 0.4785 0.7307 0.8796 0.9704
0.1066 19.0 7657 0.4130 0.7146 0.8192 0.9074 0.9693 0.7956 0.8023 0.6416 0.8124 0.8361 0.8702 0.9434 0.9117 0.8154 0.5534 0.7545 0.5971 0.8684 0.9509 0.9842 0.9380 0.6581 0.6587 0.5037 0.6791 0.7181 0.7561 0.8825 0.8409 0.6808 0.4397 0.6204 0.4779 0.7299 0.8798 0.9705
0.0992 20.0 8060 0.4199 0.7150 0.8193 0.9075 0.9704 0.7964 0.8037 0.6379 0.8041 0.8391 0.8711 0.9431 0.9116 0.8175 0.5566 0.7593 0.5995 0.8647 0.9506 0.9837 0.9380 0.6587 0.6591 0.5041 0.6800 0.7182 0.7558 0.8824 0.8412 0.6810 0.4420 0.6199 0.4787 0.7301 0.8798 0.9704

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
64M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for izzako/segformer-b4-finetuned-IDD-L2_v2

Base model

nvidia/mit-b4
Finetuned
(7)
this model