segformer-b3-finetuned-IDD-L2
This model is a fine-tuned version of nvidia/mit-b3 on the IDD 10K Semantic Segmentation Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4239
- Mean Iou: 0.6943
- Mean Accuracy: 0.8029
- Overall Accuracy: 0.9050
- Accuracy Road: 0.9738
- Accuracy Parking: 0.7682
- Accuracy Sidewalk: 0.8188
- Accuracy Rail track: 0.6593
- Accuracy Person: 0.7127
- Accuracy Rider: 0.8413
- Accuracy Motorcycle: 0.8526
- Accuracy Autorickshaw: 0.9496
- Accuracy Truck: 0.9242
- Accuracy Curb: 0.7824
- Accuracy Fence: 0.5204
- Accuracy Billboard: 0.7477
- Accuracy Pole: 0.5379
- Accuracy Building: 0.8284
- Accuracy Vegetation: 0.9499
- Accuracy Sky: 0.9791
- Iou Road: 0.9405
- Iou Parking: 0.6269
- Iou Sidewalk: 0.6605
- Iou Rail track: 0.5518
- Iou Person: 0.5704
- Iou Rider: 0.7168
- Iou Motorcycle: 0.7206
- Iou Autorickshaw: 0.8859
- Iou Truck: 0.8723
- Iou Curb: 0.6553
- Iou Fence: 0.3869
- Iou Billboard: 0.5992
- Iou Pole: 0.4300
- Iou Building: 0.6570
- Iou Vegetation: 0.8699
- Iou Sky: 0.9644
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Road | Accuracy Parking | Accuracy Sidewalk | Accuracy Rail track | Accuracy Person | Accuracy Rider | Accuracy Motorcycle | Accuracy Autorickshaw | Accuracy Truck | Accuracy Curb | Accuracy Fence | Accuracy Billboard | Accuracy Pole | Accuracy Building | Accuracy Vegetation | Accuracy Sky | Iou Road | Iou Parking | Iou Sidewalk | Iou Rail track | Iou Person | Iou Rider | Iou Motorcycle | Iou Autorickshaw | Iou Truck | Iou Curb | Iou Fence | Iou Billboard | Iou Pole | Iou Building | Iou Vegetation | Iou Sky |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3533 | 1.0 | 216 | 0.3564 | 0.6076 | 0.7367 | 0.8778 | 0.9602 | 0.7496 | 0.7994 | 0.5899 | 0.4405 | 0.8377 | 0.6808 | 0.9400 | 0.8728 | 0.6738 | 0.4940 | 0.6091 | 0.4121 | 0.8063 | 0.9490 | 0.9713 | 0.9268 | 0.5838 | 0.5063 | 0.4737 | 0.3826 | 0.5677 | 0.5780 | 0.8134 | 0.7886 | 0.5744 | 0.2721 | 0.5245 | 0.3227 | 0.6052 | 0.8447 | 0.9567 |
0.3188 | 2.0 | 432 | 0.3370 | 0.6369 | 0.7517 | 0.8857 | 0.9524 | 0.7931 | 0.7515 | 0.5139 | 0.5994 | 0.7295 | 0.8174 | 0.9170 | 0.9412 | 0.7441 | 0.3820 | 0.6820 | 0.4824 | 0.7931 | 0.9488 | 0.9795 | 0.9246 | 0.5872 | 0.5761 | 0.4647 | 0.4696 | 0.6155 | 0.6574 | 0.8463 | 0.7979 | 0.5909 | 0.2944 | 0.5595 | 0.3701 | 0.6229 | 0.8530 | 0.9598 |
0.2794 | 3.0 | 648 | 0.3253 | 0.6489 | 0.7576 | 0.8906 | 0.9684 | 0.7253 | 0.6453 | 0.6555 | 0.6408 | 0.7941 | 0.7927 | 0.9455 | 0.8692 | 0.8066 | 0.4426 | 0.6544 | 0.4068 | 0.8332 | 0.9579 | 0.9823 | 0.9336 | 0.5970 | 0.5558 | 0.5219 | 0.5086 | 0.6485 | 0.6639 | 0.8440 | 0.8283 | 0.6121 | 0.3204 | 0.5678 | 0.3454 | 0.6273 | 0.8482 | 0.9594 |
0.2462 | 4.0 | 864 | 0.3544 | 0.6423 | 0.7616 | 0.8864 | 0.9800 | 0.6697 | 0.7797 | 0.6374 | 0.6485 | 0.8107 | 0.8088 | 0.9563 | 0.7332 | 0.7271 | 0.4623 | 0.7496 | 0.4739 | 0.8162 | 0.9588 | 0.9738 | 0.9319 | 0.5765 | 0.5879 | 0.5303 | 0.5129 | 0.6568 | 0.6676 | 0.7555 | 0.7060 | 0.6117 | 0.3227 | 0.5849 | 0.3841 | 0.6310 | 0.8573 | 0.9605 |
0.2229 | 5.0 | 1080 | 0.3165 | 0.6725 | 0.7888 | 0.8974 | 0.9755 | 0.6768 | 0.7878 | 0.7369 | 0.7024 | 0.7951 | 0.8411 | 0.9405 | 0.9081 | 0.7560 | 0.5121 | 0.7361 | 0.5060 | 0.8193 | 0.9428 | 0.9840 | 0.9344 | 0.5804 | 0.6349 | 0.5339 | 0.5384 | 0.6666 | 0.6856 | 0.8614 | 0.8525 | 0.6378 | 0.3646 | 0.5909 | 0.4025 | 0.6529 | 0.8626 | 0.9606 |
0.2032 | 6.0 | 1296 | 0.3236 | 0.6718 | 0.7807 | 0.8987 | 0.9685 | 0.7700 | 0.8081 | 0.6366 | 0.5997 | 0.8254 | 0.8517 | 0.9419 | 0.9085 | 0.7650 | 0.4252 | 0.7291 | 0.5105 | 0.8175 | 0.9581 | 0.9759 | 0.9359 | 0.6146 | 0.6512 | 0.5337 | 0.4996 | 0.6615 | 0.6898 | 0.8592 | 0.8460 | 0.6462 | 0.3397 | 0.5878 | 0.4050 | 0.6564 | 0.8601 | 0.9626 |
0.1934 | 7.0 | 1512 | 0.3410 | 0.6726 | 0.7842 | 0.8969 | 0.9745 | 0.7528 | 0.7805 | 0.6859 | 0.6589 | 0.8285 | 0.8226 | 0.9507 | 0.8671 | 0.7042 | 0.4820 | 0.7639 | 0.5195 | 0.8333 | 0.9432 | 0.9793 | 0.9373 | 0.6117 | 0.6513 | 0.5626 | 0.5307 | 0.6781 | 0.6820 | 0.8341 | 0.8262 | 0.6280 | 0.3689 | 0.5919 | 0.4098 | 0.6210 | 0.8660 | 0.9627 |
0.1785 | 8.0 | 1728 | 0.3354 | 0.6835 | 0.7995 | 0.9010 | 0.9718 | 0.7610 | 0.8231 | 0.6723 | 0.6939 | 0.8082 | 0.8543 | 0.9360 | 0.9260 | 0.7866 | 0.5626 | 0.7212 | 0.5049 | 0.8535 | 0.9344 | 0.9823 | 0.9374 | 0.6152 | 0.6373 | 0.5471 | 0.5562 | 0.6865 | 0.7034 | 0.8730 | 0.8577 | 0.6457 | 0.3876 | 0.5964 | 0.4102 | 0.6511 | 0.8686 | 0.9626 |
0.1574 | 9.0 | 1944 | 0.3406 | 0.6882 | 0.7984 | 0.9021 | 0.9695 | 0.7628 | 0.7986 | 0.6512 | 0.7484 | 0.8377 | 0.8298 | 0.9419 | 0.9062 | 0.7858 | 0.5157 | 0.7209 | 0.5417 | 0.8359 | 0.9523 | 0.9765 | 0.9349 | 0.6107 | 0.6552 | 0.5509 | 0.5639 | 0.7011 | 0.7099 | 0.8745 | 0.8585 | 0.6478 | 0.3888 | 0.5955 | 0.4312 | 0.6573 | 0.8682 | 0.9632 |
0.1532 | 10.0 | 2160 | 0.3501 | 0.6885 | 0.8016 | 0.9029 | 0.9710 | 0.7628 | 0.8349 | 0.6575 | 0.7238 | 0.8346 | 0.8534 | 0.9429 | 0.9152 | 0.8002 | 0.5157 | 0.7291 | 0.5361 | 0.8205 | 0.9477 | 0.9802 | 0.9379 | 0.6187 | 0.6408 | 0.5499 | 0.5777 | 0.7021 | 0.7123 | 0.8759 | 0.8626 | 0.6553 | 0.3800 | 0.5866 | 0.4265 | 0.6581 | 0.8686 | 0.9638 |
0.1473 | 11.0 | 2376 | 0.3508 | 0.6908 | 0.8031 | 0.9029 | 0.9679 | 0.7861 | 0.8132 | 0.6387 | 0.7161 | 0.8302 | 0.8583 | 0.9434 | 0.9251 | 0.7742 | 0.5477 | 0.7457 | 0.5671 | 0.8118 | 0.9463 | 0.9779 | 0.9373 | 0.6215 | 0.6421 | 0.5368 | 0.5738 | 0.7086 | 0.7170 | 0.8802 | 0.8635 | 0.6519 | 0.3959 | 0.5986 | 0.4351 | 0.6570 | 0.8699 | 0.9636 |
0.1326 | 12.0 | 2592 | 0.3717 | 0.6918 | 0.8014 | 0.9039 | 0.9796 | 0.7255 | 0.8101 | 0.6992 | 0.6947 | 0.8297 | 0.8605 | 0.9413 | 0.9169 | 0.7758 | 0.5590 | 0.7468 | 0.5254 | 0.8313 | 0.9489 | 0.9780 | 0.9393 | 0.6154 | 0.6607 | 0.5551 | 0.5720 | 0.7102 | 0.7118 | 0.8782 | 0.8669 | 0.6512 | 0.3937 | 0.5995 | 0.4227 | 0.6579 | 0.8701 | 0.9638 |
0.1279 | 13.0 | 2808 | 0.3743 | 0.6922 | 0.8017 | 0.9036 | 0.9707 | 0.7663 | 0.8159 | 0.6908 | 0.7243 | 0.8527 | 0.8349 | 0.9470 | 0.9234 | 0.7638 | 0.5047 | 0.7375 | 0.5337 | 0.8324 | 0.9513 | 0.9779 | 0.9387 | 0.6238 | 0.6646 | 0.5582 | 0.5797 | 0.7141 | 0.7159 | 0.8807 | 0.8691 | 0.6466 | 0.3789 | 0.5950 | 0.4251 | 0.6501 | 0.8707 | 0.9636 |
0.1283 | 14.0 | 3024 | 0.3879 | 0.6929 | 0.8008 | 0.9043 | 0.9761 | 0.7591 | 0.7942 | 0.6503 | 0.7241 | 0.8353 | 0.8515 | 0.9447 | 0.9212 | 0.7926 | 0.5276 | 0.7392 | 0.5363 | 0.8363 | 0.9466 | 0.9779 | 0.9398 | 0.6211 | 0.6540 | 0.5507 | 0.5813 | 0.7142 | 0.7159 | 0.8825 | 0.8683 | 0.6554 | 0.3850 | 0.6010 | 0.4277 | 0.6542 | 0.8709 | 0.9641 |
0.1202 | 15.0 | 3240 | 0.3912 | 0.6929 | 0.8027 | 0.9040 | 0.9723 | 0.7652 | 0.8185 | 0.6819 | 0.7089 | 0.8292 | 0.8588 | 0.9511 | 0.9173 | 0.7753 | 0.5258 | 0.7291 | 0.5432 | 0.8442 | 0.9446 | 0.9779 | 0.9402 | 0.6242 | 0.6535 | 0.5582 | 0.5784 | 0.7171 | 0.7160 | 0.8792 | 0.8697 | 0.6556 | 0.3825 | 0.5967 | 0.4284 | 0.6524 | 0.8706 | 0.9641 |
0.1132 | 16.0 | 3456 | 0.3924 | 0.6923 | 0.8011 | 0.9046 | 0.9724 | 0.7740 | 0.8158 | 0.6447 | 0.7160 | 0.8422 | 0.8486 | 0.9487 | 0.9222 | 0.7955 | 0.5001 | 0.7352 | 0.5417 | 0.8341 | 0.9463 | 0.9804 | 0.9396 | 0.6267 | 0.6582 | 0.5467 | 0.5689 | 0.7165 | 0.7166 | 0.8805 | 0.8663 | 0.6592 | 0.3722 | 0.6005 | 0.4308 | 0.6591 | 0.8706 | 0.9646 |
0.1132 | 17.0 | 3672 | 0.4103 | 0.6937 | 0.8026 | 0.9047 | 0.9736 | 0.7673 | 0.8237 | 0.6688 | 0.7178 | 0.8447 | 0.8440 | 0.9489 | 0.9228 | 0.7851 | 0.5073 | 0.7418 | 0.5356 | 0.8339 | 0.9463 | 0.9801 | 0.9399 | 0.6261 | 0.6605 | 0.5543 | 0.5730 | 0.7187 | 0.7193 | 0.8843 | 0.8701 | 0.6535 | 0.3812 | 0.6000 | 0.4281 | 0.6557 | 0.8704 | 0.9644 |
0.1105 | 18.0 | 3888 | 0.4118 | 0.6943 | 0.8037 | 0.9050 | 0.9729 | 0.7731 | 0.8208 | 0.6569 | 0.7078 | 0.8443 | 0.8494 | 0.9495 | 0.9250 | 0.7810 | 0.5338 | 0.7460 | 0.5457 | 0.8251 | 0.9469 | 0.9812 | 0.9403 | 0.6276 | 0.6607 | 0.5520 | 0.5714 | 0.7159 | 0.7194 | 0.8844 | 0.8705 | 0.6550 | 0.3891 | 0.5965 | 0.4332 | 0.6585 | 0.8706 | 0.9644 |
0.106 | 19.0 | 4104 | 0.4200 | 0.6947 | 0.8039 | 0.9050 | 0.9731 | 0.7706 | 0.8204 | 0.6548 | 0.7133 | 0.8435 | 0.8522 | 0.9503 | 0.9239 | 0.7830 | 0.5379 | 0.7400 | 0.5426 | 0.8286 | 0.9497 | 0.9785 | 0.9406 | 0.6276 | 0.6613 | 0.5508 | 0.5708 | 0.7165 | 0.7211 | 0.8857 | 0.8724 | 0.6555 | 0.3901 | 0.5990 | 0.4311 | 0.6579 | 0.8698 | 0.9644 |
0.1028 | 20.0 | 4320 | 0.4239 | 0.6943 | 0.8029 | 0.9050 | 0.9738 | 0.7682 | 0.8188 | 0.6593 | 0.7127 | 0.8413 | 0.8526 | 0.9496 | 0.9242 | 0.7824 | 0.5204 | 0.7477 | 0.5379 | 0.8284 | 0.9499 | 0.9791 | 0.9405 | 0.6269 | 0.6605 | 0.5518 | 0.5704 | 0.7168 | 0.7206 | 0.8859 | 0.8723 | 0.6553 | 0.3869 | 0.5992 | 0.4300 | 0.6570 | 0.8699 | 0.9644 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for izzako/segformer-b3-finetuned-IDD-L2
Base model
nvidia/mit-b3