Visualize in Weights & Biases

segformer-b3-finetuned-IDD-L2

This model is a fine-tuned version of nvidia/mit-b3 on the IDD 10K Semantic Segmentation Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4239
  • Mean Iou: 0.6943
  • Mean Accuracy: 0.8029
  • Overall Accuracy: 0.9050
  • Accuracy Road: 0.9738
  • Accuracy Parking: 0.7682
  • Accuracy Sidewalk: 0.8188
  • Accuracy Rail track: 0.6593
  • Accuracy Person: 0.7127
  • Accuracy Rider: 0.8413
  • Accuracy Motorcycle: 0.8526
  • Accuracy Autorickshaw: 0.9496
  • Accuracy Truck: 0.9242
  • Accuracy Curb: 0.7824
  • Accuracy Fence: 0.5204
  • Accuracy Billboard: 0.7477
  • Accuracy Pole: 0.5379
  • Accuracy Building: 0.8284
  • Accuracy Vegetation: 0.9499
  • Accuracy Sky: 0.9791
  • Iou Road: 0.9405
  • Iou Parking: 0.6269
  • Iou Sidewalk: 0.6605
  • Iou Rail track: 0.5518
  • Iou Person: 0.5704
  • Iou Rider: 0.7168
  • Iou Motorcycle: 0.7206
  • Iou Autorickshaw: 0.8859
  • Iou Truck: 0.8723
  • Iou Curb: 0.6553
  • Iou Fence: 0.3869
  • Iou Billboard: 0.5992
  • Iou Pole: 0.4300
  • Iou Building: 0.6570
  • Iou Vegetation: 0.8699
  • Iou Sky: 0.9644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Road Accuracy Parking Accuracy Sidewalk Accuracy Rail track Accuracy Person Accuracy Rider Accuracy Motorcycle Accuracy Autorickshaw Accuracy Truck Accuracy Curb Accuracy Fence Accuracy Billboard Accuracy Pole Accuracy Building Accuracy Vegetation Accuracy Sky Iou Road Iou Parking Iou Sidewalk Iou Rail track Iou Person Iou Rider Iou Motorcycle Iou Autorickshaw Iou Truck Iou Curb Iou Fence Iou Billboard Iou Pole Iou Building Iou Vegetation Iou Sky
0.3533 1.0 216 0.3564 0.6076 0.7367 0.8778 0.9602 0.7496 0.7994 0.5899 0.4405 0.8377 0.6808 0.9400 0.8728 0.6738 0.4940 0.6091 0.4121 0.8063 0.9490 0.9713 0.9268 0.5838 0.5063 0.4737 0.3826 0.5677 0.5780 0.8134 0.7886 0.5744 0.2721 0.5245 0.3227 0.6052 0.8447 0.9567
0.3188 2.0 432 0.3370 0.6369 0.7517 0.8857 0.9524 0.7931 0.7515 0.5139 0.5994 0.7295 0.8174 0.9170 0.9412 0.7441 0.3820 0.6820 0.4824 0.7931 0.9488 0.9795 0.9246 0.5872 0.5761 0.4647 0.4696 0.6155 0.6574 0.8463 0.7979 0.5909 0.2944 0.5595 0.3701 0.6229 0.8530 0.9598
0.2794 3.0 648 0.3253 0.6489 0.7576 0.8906 0.9684 0.7253 0.6453 0.6555 0.6408 0.7941 0.7927 0.9455 0.8692 0.8066 0.4426 0.6544 0.4068 0.8332 0.9579 0.9823 0.9336 0.5970 0.5558 0.5219 0.5086 0.6485 0.6639 0.8440 0.8283 0.6121 0.3204 0.5678 0.3454 0.6273 0.8482 0.9594
0.2462 4.0 864 0.3544 0.6423 0.7616 0.8864 0.9800 0.6697 0.7797 0.6374 0.6485 0.8107 0.8088 0.9563 0.7332 0.7271 0.4623 0.7496 0.4739 0.8162 0.9588 0.9738 0.9319 0.5765 0.5879 0.5303 0.5129 0.6568 0.6676 0.7555 0.7060 0.6117 0.3227 0.5849 0.3841 0.6310 0.8573 0.9605
0.2229 5.0 1080 0.3165 0.6725 0.7888 0.8974 0.9755 0.6768 0.7878 0.7369 0.7024 0.7951 0.8411 0.9405 0.9081 0.7560 0.5121 0.7361 0.5060 0.8193 0.9428 0.9840 0.9344 0.5804 0.6349 0.5339 0.5384 0.6666 0.6856 0.8614 0.8525 0.6378 0.3646 0.5909 0.4025 0.6529 0.8626 0.9606
0.2032 6.0 1296 0.3236 0.6718 0.7807 0.8987 0.9685 0.7700 0.8081 0.6366 0.5997 0.8254 0.8517 0.9419 0.9085 0.7650 0.4252 0.7291 0.5105 0.8175 0.9581 0.9759 0.9359 0.6146 0.6512 0.5337 0.4996 0.6615 0.6898 0.8592 0.8460 0.6462 0.3397 0.5878 0.4050 0.6564 0.8601 0.9626
0.1934 7.0 1512 0.3410 0.6726 0.7842 0.8969 0.9745 0.7528 0.7805 0.6859 0.6589 0.8285 0.8226 0.9507 0.8671 0.7042 0.4820 0.7639 0.5195 0.8333 0.9432 0.9793 0.9373 0.6117 0.6513 0.5626 0.5307 0.6781 0.6820 0.8341 0.8262 0.6280 0.3689 0.5919 0.4098 0.6210 0.8660 0.9627
0.1785 8.0 1728 0.3354 0.6835 0.7995 0.9010 0.9718 0.7610 0.8231 0.6723 0.6939 0.8082 0.8543 0.9360 0.9260 0.7866 0.5626 0.7212 0.5049 0.8535 0.9344 0.9823 0.9374 0.6152 0.6373 0.5471 0.5562 0.6865 0.7034 0.8730 0.8577 0.6457 0.3876 0.5964 0.4102 0.6511 0.8686 0.9626
0.1574 9.0 1944 0.3406 0.6882 0.7984 0.9021 0.9695 0.7628 0.7986 0.6512 0.7484 0.8377 0.8298 0.9419 0.9062 0.7858 0.5157 0.7209 0.5417 0.8359 0.9523 0.9765 0.9349 0.6107 0.6552 0.5509 0.5639 0.7011 0.7099 0.8745 0.8585 0.6478 0.3888 0.5955 0.4312 0.6573 0.8682 0.9632
0.1532 10.0 2160 0.3501 0.6885 0.8016 0.9029 0.9710 0.7628 0.8349 0.6575 0.7238 0.8346 0.8534 0.9429 0.9152 0.8002 0.5157 0.7291 0.5361 0.8205 0.9477 0.9802 0.9379 0.6187 0.6408 0.5499 0.5777 0.7021 0.7123 0.8759 0.8626 0.6553 0.3800 0.5866 0.4265 0.6581 0.8686 0.9638
0.1473 11.0 2376 0.3508 0.6908 0.8031 0.9029 0.9679 0.7861 0.8132 0.6387 0.7161 0.8302 0.8583 0.9434 0.9251 0.7742 0.5477 0.7457 0.5671 0.8118 0.9463 0.9779 0.9373 0.6215 0.6421 0.5368 0.5738 0.7086 0.7170 0.8802 0.8635 0.6519 0.3959 0.5986 0.4351 0.6570 0.8699 0.9636
0.1326 12.0 2592 0.3717 0.6918 0.8014 0.9039 0.9796 0.7255 0.8101 0.6992 0.6947 0.8297 0.8605 0.9413 0.9169 0.7758 0.5590 0.7468 0.5254 0.8313 0.9489 0.9780 0.9393 0.6154 0.6607 0.5551 0.5720 0.7102 0.7118 0.8782 0.8669 0.6512 0.3937 0.5995 0.4227 0.6579 0.8701 0.9638
0.1279 13.0 2808 0.3743 0.6922 0.8017 0.9036 0.9707 0.7663 0.8159 0.6908 0.7243 0.8527 0.8349 0.9470 0.9234 0.7638 0.5047 0.7375 0.5337 0.8324 0.9513 0.9779 0.9387 0.6238 0.6646 0.5582 0.5797 0.7141 0.7159 0.8807 0.8691 0.6466 0.3789 0.5950 0.4251 0.6501 0.8707 0.9636
0.1283 14.0 3024 0.3879 0.6929 0.8008 0.9043 0.9761 0.7591 0.7942 0.6503 0.7241 0.8353 0.8515 0.9447 0.9212 0.7926 0.5276 0.7392 0.5363 0.8363 0.9466 0.9779 0.9398 0.6211 0.6540 0.5507 0.5813 0.7142 0.7159 0.8825 0.8683 0.6554 0.3850 0.6010 0.4277 0.6542 0.8709 0.9641
0.1202 15.0 3240 0.3912 0.6929 0.8027 0.9040 0.9723 0.7652 0.8185 0.6819 0.7089 0.8292 0.8588 0.9511 0.9173 0.7753 0.5258 0.7291 0.5432 0.8442 0.9446 0.9779 0.9402 0.6242 0.6535 0.5582 0.5784 0.7171 0.7160 0.8792 0.8697 0.6556 0.3825 0.5967 0.4284 0.6524 0.8706 0.9641
0.1132 16.0 3456 0.3924 0.6923 0.8011 0.9046 0.9724 0.7740 0.8158 0.6447 0.7160 0.8422 0.8486 0.9487 0.9222 0.7955 0.5001 0.7352 0.5417 0.8341 0.9463 0.9804 0.9396 0.6267 0.6582 0.5467 0.5689 0.7165 0.7166 0.8805 0.8663 0.6592 0.3722 0.6005 0.4308 0.6591 0.8706 0.9646
0.1132 17.0 3672 0.4103 0.6937 0.8026 0.9047 0.9736 0.7673 0.8237 0.6688 0.7178 0.8447 0.8440 0.9489 0.9228 0.7851 0.5073 0.7418 0.5356 0.8339 0.9463 0.9801 0.9399 0.6261 0.6605 0.5543 0.5730 0.7187 0.7193 0.8843 0.8701 0.6535 0.3812 0.6000 0.4281 0.6557 0.8704 0.9644
0.1105 18.0 3888 0.4118 0.6943 0.8037 0.9050 0.9729 0.7731 0.8208 0.6569 0.7078 0.8443 0.8494 0.9495 0.9250 0.7810 0.5338 0.7460 0.5457 0.8251 0.9469 0.9812 0.9403 0.6276 0.6607 0.5520 0.5714 0.7159 0.7194 0.8844 0.8705 0.6550 0.3891 0.5965 0.4332 0.6585 0.8706 0.9644
0.106 19.0 4104 0.4200 0.6947 0.8039 0.9050 0.9731 0.7706 0.8204 0.6548 0.7133 0.8435 0.8522 0.9503 0.9239 0.7830 0.5379 0.7400 0.5426 0.8286 0.9497 0.9785 0.9406 0.6276 0.6613 0.5508 0.5708 0.7165 0.7211 0.8857 0.8724 0.6555 0.3901 0.5990 0.4311 0.6579 0.8698 0.9644
0.1028 20.0 4320 0.4239 0.6943 0.8029 0.9050 0.9738 0.7682 0.8188 0.6593 0.7127 0.8413 0.8526 0.9496 0.9242 0.7824 0.5204 0.7477 0.5379 0.8284 0.9499 0.9791 0.9405 0.6269 0.6605 0.5518 0.5704 0.7168 0.7206 0.8859 0.8723 0.6553 0.3869 0.5992 0.4300 0.6570 0.8699 0.9644

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
47.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for izzako/segformer-b3-finetuned-IDD-L2

Base model

nvidia/mit-b3
Finetuned
(14)
this model