A Reproduction of OpenLLaMA using 128 H100 GPUs in Bfloat16.
The pretrain data consists of Falcon, Starcoder, and the wikipedia, arxiv, books, stackexchange from RedPajama. In total, this encompassed nearly 1 trillion tokens.
The model was trained over a single epoch, incorporating 2000 warm-up steps and a cosine learning rate schedule, starting at 3e-5 with 4M batch size.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 47.09 |
AI2 Reasoning Challenge (25-Shot) | 46.16 |
HellaSwag (10-Shot) | 76.40 |
MMLU (5-Shot) | 42.82 |
TruthfulQA (0-shot) | 36.65 |
Winogrande (5-shot) | 70.88 |
GSM8k (5-shot) | 9.63 |
- Downloads last month
- 1,200
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for itsliupeng/openllama-7b-base
Datasets used to train itsliupeng/openllama-7b-base
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard46.160
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard76.400
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard42.820
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard36.650
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard70.880
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard9.630