itlwas
Upload README.md with huggingface_hub
1a037a5 verified
metadata
license: apache-2.0
tags:
  - finetuned
  - llama-cpp
  - gguf-my-repo
base_model: mistralai/Mistral-7B-Instruct-v0.1
pipeline_tag: text-generation
inference: true
widget:
  - messages:
      - role: user
        content: What is your favorite condiment?
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.

AIronMind/Mistral-7B-Instruct-v0.1-Q4_K_M-GGUF

This model was converted to GGUF format from mistralai/Mistral-7B-Instruct-v0.1 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo AIronMind/Mistral-7B-Instruct-v0.1-Q4_K_M-GGUF --hf-file mistral-7b-instruct-v0.1-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo AIronMind/Mistral-7B-Instruct-v0.1-Q4_K_M-GGUF --hf-file mistral-7b-instruct-v0.1-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo AIronMind/Mistral-7B-Instruct-v0.1-Q4_K_M-GGUF --hf-file mistral-7b-instruct-v0.1-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo AIronMind/Mistral-7B-Instruct-v0.1-Q4_K_M-GGUF --hf-file mistral-7b-instruct-v0.1-q4_k_m.gguf -c 2048