GigaAM v2 models converted to ONNX format for onnx-asr.

Install onnx-asr

pip install onnx-asr[cpu,hub]

Load GigaAM v2 CTC model and recognize wav file

import onnx_asr

model = onnx_asr.load_model("gigaam-v2-ctc")
print(model.recognize("test.wav"))

Load GigaAM v2 RNN-T model and recognize wav file

import onnx_asr

model = onnx_asr.load_model("gigaam-v2-rnnt")
print(model.recognize("test.wav"))

Code for models export

import gigaam
from pathlib import Path

onnx_dir = "gigaam-onnx"
model_type = "rnnt"  # or "ctc"

model = gigaam.load_model(
    model_type,
    fp16_encoder=False,  # only fp32 tensors
    use_flash=False,  # disable flash attention
)
model.to_onnx(dir_path=onnx_dir)

with Path(onnx_dir, "v2_vocab.txt").open("wt") as f:
    for i, token in enumerate(["\u2581", *(chr(ord("а") + i) for i in range(32)), "<blk>"]):
        f.write(f"{token} {i}\n")
Downloads last month
261
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Space using istupakov/gigaam-v2-onnx 1

Collection including istupakov/gigaam-v2-onnx