segformer-b5-finetuned-segments-chargers-full-v5.1
This model is a fine-tuned version of nvidia/mit-b5 on the dskong07/chargers-full-v0.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3962
- Mean Iou: 0.7853
- Mean Accuracy: 0.8809
- Overall Accuracy: 0.9180
- Accuracy Unlabeled: nan
- Accuracy Screen: 0.8689
- Accuracy Body: 0.9342
- Accuracy Cable: 0.7464
- Accuracy Plug: 0.9272
- Accuracy Void-background: 0.9277
- Iou Unlabeled: nan
- Iou Screen: 0.7716
- Iou Body: 0.8025
- Iou Cable: 0.6299
- Iou Plug: 0.8233
- Iou Void-background: 0.8993
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Screen | Accuracy Body | Accuracy Cable | Accuracy Plug | Accuracy Void-background | Iou Unlabeled | Iou Screen | Iou Body | Iou Cable | Iou Plug | Iou Void-background |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6293 | 2.2222 | 20 | 0.9773 | 0.6257 | 0.7646 | 0.8358 | nan | 0.7319 | 0.9339 | 0.4731 | 0.8530 | 0.8314 | nan | 0.6239 | 0.6559 | 0.3567 | 0.6921 | 0.8000 |
0.4226 | 4.4444 | 40 | 0.5124 | 0.7130 | 0.8278 | 0.8860 | nan | 0.8381 | 0.9318 | 0.5989 | 0.8755 | 0.8949 | nan | 0.7153 | 0.7396 | 0.4883 | 0.7585 | 0.8632 |
0.2018 | 6.6667 | 60 | 0.4182 | 0.7468 | 0.8496 | 0.9023 | nan | 0.8413 | 0.9117 | 0.6632 | 0.9111 | 0.9209 | nan | 0.7288 | 0.7664 | 0.5540 | 0.8020 | 0.8828 |
0.1678 | 8.8889 | 80 | 0.4337 | 0.7622 | 0.8648 | 0.9083 | nan | 0.8578 | 0.9141 | 0.7229 | 0.9038 | 0.9252 | nan | 0.7428 | 0.7780 | 0.5838 | 0.8164 | 0.8899 |
0.1711 | 11.1111 | 100 | 0.3718 | 0.7632 | 0.8733 | 0.9096 | nan | 0.8756 | 0.9143 | 0.7393 | 0.9143 | 0.9228 | nan | 0.7393 | 0.7856 | 0.5889 | 0.8108 | 0.8917 |
0.1385 | 13.3333 | 120 | 0.4243 | 0.7655 | 0.8642 | 0.9087 | nan | 0.8161 | 0.9245 | 0.7292 | 0.9288 | 0.9221 | nan | 0.7507 | 0.7793 | 0.5982 | 0.8105 | 0.8890 |
0.1582 | 15.5556 | 140 | 0.4018 | 0.7712 | 0.8737 | 0.9117 | nan | 0.8464 | 0.9394 | 0.7324 | 0.9330 | 0.9175 | nan | 0.7659 | 0.7914 | 0.6003 | 0.8065 | 0.8921 |
0.1249 | 17.7778 | 160 | 0.4037 | 0.7726 | 0.8692 | 0.9142 | nan | 0.8531 | 0.9299 | 0.7032 | 0.9326 | 0.9270 | nan | 0.7503 | 0.7948 | 0.6020 | 0.8198 | 0.8963 |
0.1239 | 20.0 | 180 | 0.4015 | 0.7768 | 0.8752 | 0.9140 | nan | 0.8574 | 0.9293 | 0.7190 | 0.9470 | 0.9233 | nan | 0.7674 | 0.7912 | 0.6079 | 0.8228 | 0.8948 |
0.0895 | 22.2222 | 200 | 0.4355 | 0.7753 | 0.8771 | 0.9134 | nan | 0.8245 | 0.9352 | 0.7656 | 0.9393 | 0.9208 | nan | 0.7559 | 0.7914 | 0.6172 | 0.8167 | 0.8951 |
0.1014 | 24.4444 | 220 | 0.4007 | 0.7802 | 0.8862 | 0.9160 | nan | 0.8555 | 0.9317 | 0.7764 | 0.9452 | 0.9221 | nan | 0.7648 | 0.8008 | 0.6235 | 0.8141 | 0.8981 |
0.0782 | 26.6667 | 240 | 0.3852 | 0.7821 | 0.8763 | 0.9176 | nan | 0.8749 | 0.9311 | 0.7368 | 0.9079 | 0.9310 | nan | 0.7729 | 0.8030 | 0.6184 | 0.8164 | 0.8996 |
0.076 | 28.8889 | 260 | 0.4259 | 0.7767 | 0.8762 | 0.9148 | nan | 0.8671 | 0.9390 | 0.7260 | 0.9271 | 0.9220 | nan | 0.7621 | 0.7967 | 0.6144 | 0.8142 | 0.8963 |
0.0752 | 31.1111 | 280 | 0.4058 | 0.7850 | 0.8828 | 0.9184 | nan | 0.8832 | 0.9272 | 0.7436 | 0.9305 | 0.9295 | nan | 0.7726 | 0.8029 | 0.6235 | 0.8250 | 0.9007 |
0.0674 | 33.3333 | 300 | 0.3960 | 0.7845 | 0.8816 | 0.9179 | nan | 0.8838 | 0.9252 | 0.7370 | 0.9324 | 0.9297 | nan | 0.7732 | 0.8027 | 0.6254 | 0.8218 | 0.8993 |
0.0873 | 35.5556 | 320 | 0.4026 | 0.7864 | 0.8843 | 0.9177 | nan | 0.8807 | 0.9296 | 0.7488 | 0.9358 | 0.9265 | nan | 0.7827 | 0.8023 | 0.6274 | 0.8217 | 0.8978 |
0.0819 | 37.7778 | 340 | 0.4422 | 0.7832 | 0.8785 | 0.9170 | nan | 0.8622 | 0.9365 | 0.7359 | 0.9320 | 0.9258 | nan | 0.7770 | 0.7996 | 0.6221 | 0.8192 | 0.8983 |
0.1206 | 40.0 | 360 | 0.4247 | 0.7825 | 0.8767 | 0.9168 | nan | 0.8733 | 0.9329 | 0.7202 | 0.9297 | 0.9273 | nan | 0.7714 | 0.7987 | 0.6216 | 0.8233 | 0.8977 |
0.076 | 42.2222 | 380 | 0.3981 | 0.7861 | 0.8848 | 0.9174 | nan | 0.8767 | 0.9326 | 0.7508 | 0.9393 | 0.9246 | nan | 0.7790 | 0.8006 | 0.6283 | 0.8245 | 0.8979 |
0.056 | 44.4444 | 400 | 0.4297 | 0.7845 | 0.8842 | 0.9170 | nan | 0.8762 | 0.9359 | 0.7425 | 0.9439 | 0.9227 | nan | 0.7757 | 0.8010 | 0.6285 | 0.8196 | 0.8976 |
0.0666 | 46.6667 | 420 | 0.3950 | 0.7839 | 0.8793 | 0.9174 | nan | 0.8566 | 0.9372 | 0.7452 | 0.9313 | 0.9262 | nan | 0.7682 | 0.8010 | 0.6305 | 0.8213 | 0.8987 |
0.0689 | 48.8889 | 440 | 0.3962 | 0.7853 | 0.8809 | 0.9180 | nan | 0.8689 | 0.9342 | 0.7464 | 0.9272 | 0.9277 | nan | 0.7716 | 0.8025 | 0.6299 | 0.8233 | 0.8993 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for irvingz/segformer-b5-finetuned-segments-chargers-full-v5.1
Base model
nvidia/mit-b5