segformer-b5-finetuned-segments-chargers-full-v5.1

This model is a fine-tuned version of nvidia/mit-b5 on the dskong07/chargers-full-v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3962
  • Mean Iou: 0.7853
  • Mean Accuracy: 0.8809
  • Overall Accuracy: 0.9180
  • Accuracy Unlabeled: nan
  • Accuracy Screen: 0.8689
  • Accuracy Body: 0.9342
  • Accuracy Cable: 0.7464
  • Accuracy Plug: 0.9272
  • Accuracy Void-background: 0.9277
  • Iou Unlabeled: nan
  • Iou Screen: 0.7716
  • Iou Body: 0.8025
  • Iou Cable: 0.6299
  • Iou Plug: 0.8233
  • Iou Void-background: 0.8993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Screen Accuracy Body Accuracy Cable Accuracy Plug Accuracy Void-background Iou Unlabeled Iou Screen Iou Body Iou Cable Iou Plug Iou Void-background
0.6293 2.2222 20 0.9773 0.6257 0.7646 0.8358 nan 0.7319 0.9339 0.4731 0.8530 0.8314 nan 0.6239 0.6559 0.3567 0.6921 0.8000
0.4226 4.4444 40 0.5124 0.7130 0.8278 0.8860 nan 0.8381 0.9318 0.5989 0.8755 0.8949 nan 0.7153 0.7396 0.4883 0.7585 0.8632
0.2018 6.6667 60 0.4182 0.7468 0.8496 0.9023 nan 0.8413 0.9117 0.6632 0.9111 0.9209 nan 0.7288 0.7664 0.5540 0.8020 0.8828
0.1678 8.8889 80 0.4337 0.7622 0.8648 0.9083 nan 0.8578 0.9141 0.7229 0.9038 0.9252 nan 0.7428 0.7780 0.5838 0.8164 0.8899
0.1711 11.1111 100 0.3718 0.7632 0.8733 0.9096 nan 0.8756 0.9143 0.7393 0.9143 0.9228 nan 0.7393 0.7856 0.5889 0.8108 0.8917
0.1385 13.3333 120 0.4243 0.7655 0.8642 0.9087 nan 0.8161 0.9245 0.7292 0.9288 0.9221 nan 0.7507 0.7793 0.5982 0.8105 0.8890
0.1582 15.5556 140 0.4018 0.7712 0.8737 0.9117 nan 0.8464 0.9394 0.7324 0.9330 0.9175 nan 0.7659 0.7914 0.6003 0.8065 0.8921
0.1249 17.7778 160 0.4037 0.7726 0.8692 0.9142 nan 0.8531 0.9299 0.7032 0.9326 0.9270 nan 0.7503 0.7948 0.6020 0.8198 0.8963
0.1239 20.0 180 0.4015 0.7768 0.8752 0.9140 nan 0.8574 0.9293 0.7190 0.9470 0.9233 nan 0.7674 0.7912 0.6079 0.8228 0.8948
0.0895 22.2222 200 0.4355 0.7753 0.8771 0.9134 nan 0.8245 0.9352 0.7656 0.9393 0.9208 nan 0.7559 0.7914 0.6172 0.8167 0.8951
0.1014 24.4444 220 0.4007 0.7802 0.8862 0.9160 nan 0.8555 0.9317 0.7764 0.9452 0.9221 nan 0.7648 0.8008 0.6235 0.8141 0.8981
0.0782 26.6667 240 0.3852 0.7821 0.8763 0.9176 nan 0.8749 0.9311 0.7368 0.9079 0.9310 nan 0.7729 0.8030 0.6184 0.8164 0.8996
0.076 28.8889 260 0.4259 0.7767 0.8762 0.9148 nan 0.8671 0.9390 0.7260 0.9271 0.9220 nan 0.7621 0.7967 0.6144 0.8142 0.8963
0.0752 31.1111 280 0.4058 0.7850 0.8828 0.9184 nan 0.8832 0.9272 0.7436 0.9305 0.9295 nan 0.7726 0.8029 0.6235 0.8250 0.9007
0.0674 33.3333 300 0.3960 0.7845 0.8816 0.9179 nan 0.8838 0.9252 0.7370 0.9324 0.9297 nan 0.7732 0.8027 0.6254 0.8218 0.8993
0.0873 35.5556 320 0.4026 0.7864 0.8843 0.9177 nan 0.8807 0.9296 0.7488 0.9358 0.9265 nan 0.7827 0.8023 0.6274 0.8217 0.8978
0.0819 37.7778 340 0.4422 0.7832 0.8785 0.9170 nan 0.8622 0.9365 0.7359 0.9320 0.9258 nan 0.7770 0.7996 0.6221 0.8192 0.8983
0.1206 40.0 360 0.4247 0.7825 0.8767 0.9168 nan 0.8733 0.9329 0.7202 0.9297 0.9273 nan 0.7714 0.7987 0.6216 0.8233 0.8977
0.076 42.2222 380 0.3981 0.7861 0.8848 0.9174 nan 0.8767 0.9326 0.7508 0.9393 0.9246 nan 0.7790 0.8006 0.6283 0.8245 0.8979
0.056 44.4444 400 0.4297 0.7845 0.8842 0.9170 nan 0.8762 0.9359 0.7425 0.9439 0.9227 nan 0.7757 0.8010 0.6285 0.8196 0.8976
0.0666 46.6667 420 0.3950 0.7839 0.8793 0.9174 nan 0.8566 0.9372 0.7452 0.9313 0.9262 nan 0.7682 0.8010 0.6305 0.8213 0.8987
0.0689 48.8889 440 0.3962 0.7853 0.8809 0.9180 nan 0.8689 0.9342 0.7464 0.9272 0.9277 nan 0.7716 0.8025 0.6299 0.8233 0.8993

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for irvingz/segformer-b5-finetuned-segments-chargers-full-v5.1

Base model

nvidia/mit-b5
Finetuned
(48)
this model