InternLM2.5-Step-Prover

InternLM-Math HOT

A state-of-the-art LEAN4 step prover.

💻 Github 📊Dataset 📖 Paper

InternLM2.5-Step-Prover is a 7B language model which achieves state-of-the-art performances on MiniF2F, ProofNet, and Putnam math benchmarks, showing its formal math proving ability in multiple domains.

Dialogue Example

### Input template
f"---\nNAME: {theorem.full_name}\n\n"
f"---\nPROOF_BEFORE: {proof_before}\n\n"
f"---\nSTATE_BEFORE: {state}\n\n"
f"---\nTACTIC: "
### Input example
---
NAME: square_sub_one_divisible_eight
---
PROOF_BEFORE: rw [h, pow_two]
---
STATE_BEFORE: m n : N
h : n = 2 * m + 1
⊢ 8 | (2 * m + 1) * (2 * m + 1) - 1
---
TACTIC:
### Output example
rw [← Nat.mod_add_div (2 * m + 1) 8]

If you want to use critic model, please refer critic's model page.

Performance

MiniF2F

Method Model size Pass miniF2F-valid miniF2F-test
Whole-Proof Generation Methods
GPT-4-turbo 0409 - 64 25.4% 23.0%
DeepSeekMath-Base 7B 128 25.4% 27.5%
DeepSeek-Prover 7B 1 - 30.0%
64 - 46.3%
128 - 46.3%
8192 - 48.8%
65536 - 50.0%
cumulative 60.2% 52.0%
DeepSeek-Prover-1.5 7B 32 - 63.5%
TheoremLlama - cumulative 36.5% 33.6%
Tree Search Methods
COPRA (GPT-3.5) - 1 - 9.0%
COPRA (GPT-4) - 1 - 26.6%
DSP(Isabelle) 540B 100 42.6% 38.9%
Proof Artifact Co-Training 837M 1 23.9% 24.6%
8 29.3% 29.2%
ReProver 229M 1 - 25.0%
Llemma 7B 1 26.2% 26.2%
Llemma 34B 1 27.9% 25.8%
Curriculum Learning 837M 1 33.6% 29.6%
8 41.2% 34.5%
64 47.3% 36.6%
Hypertree Proof Search 600M cumulative 58.6% -
64 - 41.0%
Lean-STaR 7B 64 - 46.3%
InternLM2-Math 7B 1 29.9% 30.3%
InternLM2-Math-Plus 7B 1 - 43.4%
InternLM2-Step-Prover 7B 1 59.8% 48.8%
InternLM2.5-Step-Prover 7B 1 55.4% 47.3%
InternLM2.5-Step-Prover+Critic 7B 256 69.6% 65.9%

Proofnet & Putnam

Method Model size Pass result
ProofNet benchmark
ReProver 229M 1 13.8%
InternLM2-Step-Prover 7B 1 18.1%
InternLM2.5-Step-Prover 7B 256 27.0%
Putnam benchmark
GPT-4 - 10 1/640
COPRA (GPT-4) - 10 1/640
DSP(Isabelle) 540B 10 4/640
ReProver 229M 1 0/640
InternLM2-Step-Prover 7B 1 5/640
InternLM2.5-Step-Prover 7B 1 6/640

Citation and Tech Report

@misc{wu2024internlm25stepproveradvancingautomatedtheorem,
      title={InternLM2.5-StepProver: Advancing Automated Theorem Proving via Expert Iteration on Large-Scale LEAN Problems}, 
      author={Zijian Wu and Suozhi Huang and Zhejian Zhou and Huaiyuan Ying and Jiayu Wang and Dahua Lin and Kai Chen},
      year={2024},
      eprint={2410.15700},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2410.15700}, 
}
Downloads last month
143
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for internlm/internlm2_5-step-prover

Quantizations
1 model

Datasets used to train internlm/internlm2_5-step-prover

Collection including internlm/internlm2_5-step-prover