yhcao's picture
upload models
8e1010d
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import numpy as np
import torch
import torch.nn as nn
from builder_encoder import build_vision_tower
from builder_projector import build_vision_projector
from constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=False)
self.mm_projector = build_vision_projector(config)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector = build_vision_projector(self.config)
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images, base_mode=False):
clip_features = self.get_model().get_vision_tower()(images)
if not base_mode:
clip_features = self.mix_spatial_tokens(clip_features)
else:
clip_features = self.mix_spatial_tokens(clip_features)
image_features = self.get_model().mm_projector(clip_features)
return clip_features, image_features
def extract_images(self, images):
image_features_list = []
block_size = 16
for i in range(0, images.shape[0], block_size):
image_features = self.get_model().get_vision_tower()(images[i: i+block_size])
image_features_list.append(image_features)
image_features = torch.cat(image_features_list, dim=0)
assert image_features.shape[0] == images.shape[0]
return image_features
def project_features(self, features):
proj_features = self.get_model().mm_projector(features)
return proj_features
def mix_spatial_tokens(self, features):
# features b n c
# output b n//4 4c
b, n, c = features.shape
h = int(np.sqrt(n))
features = features.view(b, h//2, 2, h//2, 2, c).permute(0, 1, 3, 2, 4, 5).contiguous()
features = features.view(b, n//4, 4*c).contiguous()
return features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, qs_ids, qs_mask, past_key_values, labels, images, projector
):
vision_tower = self.get_vision_tower()
if hasattr(self.get_model().mm_projector, 'num_slot'):
base_mode = False
num_slot = self.get_model().mm_projector.num_slot
elif hasattr(self.get_model().mm_projector, 'resolution'):
base_mode = False
pool_num = self.get_model().mm_projector.pool_num
resolution = self.get_model().mm_projector.resolution + pool_num
else:
base_mode = True
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if isinstance(past_key_values, tuple) and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
elif past_key_values is not None and past_key_values.seqlen_offset>0:
target_shape = past_key_values.seqlen_offset + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, None, None, None, labels
''' using pre-extraced video features
if type(images) is list:
concat_images = []
concat_features = []
modality_indicators = []
for image, projector_type in zip(images, projector):
if image.ndim == 2: # pre-extracted feature
concat_features.append(image)
modality_indicators.append(2)
elif image.ndim == 3: # single image
concat_images.append(image.unsqueeze(0))
modality_indicators.append(1)
elif image.ndim == 4: # multiple frames
concat_images.append(image)
modality_indicators.append(2)
concat_images = torch.cat(concat_images, dim=0)
concat_features = torch.stack(concat_features, dim=0)
concat_images = self.extract_images(concat_images)
concat_images, concat_features = self.project_features([concat_images, concat_features])
# concat_combine = torch.cat([concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0)
# concat_combine = self.project_features(concat_combine)
# concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1)
# concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1)
image_features = []
image_index = 0
feature_index = 0
for image in images:
if image.ndim == 2:
image_features.append(concat_features[feature_index])
feature_index += 1
elif image.ndim == 3:
image_features.append(concat_images[image_index])
image_index += 1
elif image.ndim == 4:
image_features.append(concat_images[image_index: image_index+image.shape[0]].flatten(0, 1))
image_index += image.shape[0]
image_features = [x.to(self.device) for x in image_features]
'''
if qs_ids is not None:
qs_embeds = self.get_model().embed_tokens(qs_ids)
else:
qs_embeds = None
assert len(images) == len(input_ids)
if type(images) is list:
concat_images = []
concat_videos = []
modality_indicators = []
for image in images:
if image.ndim == 3: # single image
concat_images.append(image.unsqueeze(0))
modality_indicators.append(1)
elif image.ndim == 4: # multiple frames
concat_videos.append(image)
modality_indicators.append(2)
concat_images = torch.cat(concat_images, dim=0) # n c h w
concat_videos = torch.stack(concat_videos, dim=0) # n t c h w
mix_image_video = torch.cat([concat_images, concat_videos.view(-1, *concat_videos.shape[2:])], dim=0) # m c h w
mix_image_video = self.extract_images(mix_image_video) # m k c
if not base_mode:
mix_image_video = self.mix_spatial_tokens(mix_image_video)
concat_images = mix_image_video[:concat_images.shape[0]].contiguous() # n k c
concat_videos = mix_image_video[concat_images.shape[0]:].contiguous().view(
concat_videos.shape[0], concat_videos.shape[1]*mix_image_video.shape[1], mix_image_video.shape[2]) # n, tk, c
else:
mix_image_video = self.mix_spatial_tokens(mix_image_video)
concat_images = mix_image_video[:concat_images.shape[0]].contiguous() # n k c
concat_videos = mix_image_video[concat_images.shape[0]:].contiguous().view(
concat_videos.shape[0], concat_videos.shape[1], mix_image_video.shape[1], mix_image_video.shape[2]) # n, t, k, c
clip_features = []
image_index = 0
video_index = 0
for image in images:
if image.ndim == 3:
clip_features.append(concat_images[image_index])
image_index += 1
elif image.ndim == 4:
clip_features.append(concat_videos[video_index])
video_index += 1
clip_features = [x.to(self.device) for x in clip_features]
concat_images, concat_videos = self.project_features([concat_images, concat_videos])
image_features = []
image_index = 0
video_index = 0
for image in images:
if image.ndim == 3:
image_features.append(concat_images[image_index])
image_index += 1
elif image.ndim == 4:
image_features.append(concat_videos[video_index])
video_index += 1
image_features = [x.to(self.device) for x in image_features]
elif images.ndim == 5:
modality_indicators = [2 for _ in range(images.shape[0])]
concat_images = images.view(-1, *images.shape[2:]) # nt c h w
image_features = self.extract_images(concat_images)
# image_features = image_features.view(images.shape[0], images.shape[1], image_features.shape[1], image_features.shape[2]) # n t k c
# time_token = torch.mean(image_features, dim=2) # n t c
# spatial_token = torch.mean(image_features, dim=1) # n k c
# token = torch.cat([time_token, spatial_token], dim=1)
# output = self.project_features(token) # n t+k c
# image_features = [x.to(self.device) for x in output]
if not base_mode:
image_features = self.mix_spatial_tokens(image_features) # nt k c
image_features = image_features.view(images.shape[0], images.shape[1]*image_features.shape[1], image_features.shape[2]) # n tk c
else:
image_features = self.mix_spatial_tokens(image_features) # nt k c
image_features = image_features.view(images.shape[0], images.shape[1], image_features.shape[1], image_features.shape[2]) # n t k c
clip_features = [x.to(self.device) for x in image_features]
image_features = self.project_features(image_features)
image_features = [x.to(self.device) for x in image_features]
elif images.ndim == 3:
modality_indicators = [2 for _ in range(images.shape[0])]
image_features = self.project_features(images).to(self.device)
else:
modality_indicators = [1 for _ in range(images.shape[0])]
clip_features, image_features = self.encode_images(images, base_mode)
clip_features = [x.to(self.device) for x in clip_features]
image_features = [x.to(self.device) for x in image_features]
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
indicators = torch.zeros_like(input_ids)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
indicators = [cur_indicators[cur_attention_mask] for cur_indicators, cur_attention_mask in zip(indicators, attention_mask)]
new_input_embeds = []
new_labels = []
new_indicators = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
new_indicators.append(indicators[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
cur_indicators = indicators[batch_idx]
cur_indicators_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
cur_indicators_noim.append(cur_indicators[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
cur_new_indicators = []
if True: # stage 2
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_new_indicators.append(cur_indicators_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
if hasattr(self.get_model().mm_projector, 'resolution'):
assert (cur_image_features.shape[0]-1) % resolution == 0
num_slot = (cur_image_features.shape[0]-1) // resolution * pool_num
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
tmp = modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype)
try:
tmp[-num_slot-1: -1] = 100
tmp[-1] = 200
except:
pass
cur_new_indicators.append(tmp)
# cur_new_indicators.append(modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype))
# cur_new_indicators.append(torch.ones((self.config.n_slot,), device=cur_indicators.device, dtype=cur_indicators.dtype)+1)
if False: # stage 1
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_new_indicators.append(cur_indicators_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
if hasattr(self.get_model().mm_projector, 'resolution'):
assert cur_image_features.shape[0] % resolution == 0
num_slot = cur_image_features.shape[0] // resolution * pool_num
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
tmp = modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype)
tmp[-num_slot:] = 100
cur_new_indicators.append(tmp)
# cur_new_indicators.append(modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype))
# cur_new_indicators.append(torch.ones((self.config.n_slot,), device=cur_indicators.device, dtype=cur_indicators.dtype)+1)
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
cur_new_indicators = torch.cat(cur_new_indicators)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
new_indicators.append(cur_new_indicators)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
new_indicators = [x[:tokenizer_model_max_length] for x in new_indicators]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
new_indicators_padded = torch.zeros((batch_size, max_len), dtype=new_indicators[0].dtype, device=new_indicators[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels, cur_new_indicators) in enumerate(zip(new_input_embeds, new_labels, new_indicators)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
new_indicators_padded[i, -cur_len:] = cur_new_indicators
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
new_indicators_padded[i, :cur_len] = cur_new_indicators
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
new_indicators = new_indicators_padded
# print('finish preparing labels multimodal')
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
if base_mode:
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
else:
return None, position_ids, attention_mask, past_key_values, new_input_embeds, clip_features, qs_embeds, qs_mask, (new_labels, new_indicators)
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False