File size: 26,614 Bytes
8e1010d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import numpy as np
import torch
import torch.nn as nn
from builder_encoder import build_vision_tower
from builder_projector import build_vision_projector
from constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=False)
self.mm_projector = build_vision_projector(config)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector = build_vision_projector(self.config)
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images, base_mode=False):
clip_features = self.get_model().get_vision_tower()(images)
if not base_mode:
clip_features = self.mix_spatial_tokens(clip_features)
else:
clip_features = self.mix_spatial_tokens(clip_features)
image_features = self.get_model().mm_projector(clip_features)
return clip_features, image_features
def extract_images(self, images):
image_features_list = []
block_size = 16
for i in range(0, images.shape[0], block_size):
image_features = self.get_model().get_vision_tower()(images[i: i+block_size])
image_features_list.append(image_features)
image_features = torch.cat(image_features_list, dim=0)
assert image_features.shape[0] == images.shape[0]
return image_features
def project_features(self, features):
proj_features = self.get_model().mm_projector(features)
return proj_features
def mix_spatial_tokens(self, features):
# features b n c
# output b n//4 4c
b, n, c = features.shape
h = int(np.sqrt(n))
features = features.view(b, h//2, 2, h//2, 2, c).permute(0, 1, 3, 2, 4, 5).contiguous()
features = features.view(b, n//4, 4*c).contiguous()
return features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, qs_ids, qs_mask, past_key_values, labels, images, projector
):
vision_tower = self.get_vision_tower()
if hasattr(self.get_model().mm_projector, 'num_slot'):
base_mode = False
num_slot = self.get_model().mm_projector.num_slot
elif hasattr(self.get_model().mm_projector, 'resolution'):
base_mode = False
pool_num = self.get_model().mm_projector.pool_num
resolution = self.get_model().mm_projector.resolution + pool_num
else:
base_mode = True
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if isinstance(past_key_values, tuple) and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
elif past_key_values is not None and past_key_values.seqlen_offset>0:
target_shape = past_key_values.seqlen_offset + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, None, None, None, labels
''' using pre-extraced video features
if type(images) is list:
concat_images = []
concat_features = []
modality_indicators = []
for image, projector_type in zip(images, projector):
if image.ndim == 2: # pre-extracted feature
concat_features.append(image)
modality_indicators.append(2)
elif image.ndim == 3: # single image
concat_images.append(image.unsqueeze(0))
modality_indicators.append(1)
elif image.ndim == 4: # multiple frames
concat_images.append(image)
modality_indicators.append(2)
concat_images = torch.cat(concat_images, dim=0)
concat_features = torch.stack(concat_features, dim=0)
concat_images = self.extract_images(concat_images)
concat_images, concat_features = self.project_features([concat_images, concat_features])
# concat_combine = torch.cat([concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0)
# concat_combine = self.project_features(concat_combine)
# concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1)
# concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1)
image_features = []
image_index = 0
feature_index = 0
for image in images:
if image.ndim == 2:
image_features.append(concat_features[feature_index])
feature_index += 1
elif image.ndim == 3:
image_features.append(concat_images[image_index])
image_index += 1
elif image.ndim == 4:
image_features.append(concat_images[image_index: image_index+image.shape[0]].flatten(0, 1))
image_index += image.shape[0]
image_features = [x.to(self.device) for x in image_features]
'''
if qs_ids is not None:
qs_embeds = self.get_model().embed_tokens(qs_ids)
else:
qs_embeds = None
assert len(images) == len(input_ids)
if type(images) is list:
concat_images = []
concat_videos = []
modality_indicators = []
for image in images:
if image.ndim == 3: # single image
concat_images.append(image.unsqueeze(0))
modality_indicators.append(1)
elif image.ndim == 4: # multiple frames
concat_videos.append(image)
modality_indicators.append(2)
concat_images = torch.cat(concat_images, dim=0) # n c h w
concat_videos = torch.stack(concat_videos, dim=0) # n t c h w
mix_image_video = torch.cat([concat_images, concat_videos.view(-1, *concat_videos.shape[2:])], dim=0) # m c h w
mix_image_video = self.extract_images(mix_image_video) # m k c
if not base_mode:
mix_image_video = self.mix_spatial_tokens(mix_image_video)
concat_images = mix_image_video[:concat_images.shape[0]].contiguous() # n k c
concat_videos = mix_image_video[concat_images.shape[0]:].contiguous().view(
concat_videos.shape[0], concat_videos.shape[1]*mix_image_video.shape[1], mix_image_video.shape[2]) # n, tk, c
else:
mix_image_video = self.mix_spatial_tokens(mix_image_video)
concat_images = mix_image_video[:concat_images.shape[0]].contiguous() # n k c
concat_videos = mix_image_video[concat_images.shape[0]:].contiguous().view(
concat_videos.shape[0], concat_videos.shape[1], mix_image_video.shape[1], mix_image_video.shape[2]) # n, t, k, c
clip_features = []
image_index = 0
video_index = 0
for image in images:
if image.ndim == 3:
clip_features.append(concat_images[image_index])
image_index += 1
elif image.ndim == 4:
clip_features.append(concat_videos[video_index])
video_index += 1
clip_features = [x.to(self.device) for x in clip_features]
concat_images, concat_videos = self.project_features([concat_images, concat_videos])
image_features = []
image_index = 0
video_index = 0
for image in images:
if image.ndim == 3:
image_features.append(concat_images[image_index])
image_index += 1
elif image.ndim == 4:
image_features.append(concat_videos[video_index])
video_index += 1
image_features = [x.to(self.device) for x in image_features]
elif images.ndim == 5:
modality_indicators = [2 for _ in range(images.shape[0])]
concat_images = images.view(-1, *images.shape[2:]) # nt c h w
image_features = self.extract_images(concat_images)
# image_features = image_features.view(images.shape[0], images.shape[1], image_features.shape[1], image_features.shape[2]) # n t k c
# time_token = torch.mean(image_features, dim=2) # n t c
# spatial_token = torch.mean(image_features, dim=1) # n k c
# token = torch.cat([time_token, spatial_token], dim=1)
# output = self.project_features(token) # n t+k c
# image_features = [x.to(self.device) for x in output]
if not base_mode:
image_features = self.mix_spatial_tokens(image_features) # nt k c
image_features = image_features.view(images.shape[0], images.shape[1]*image_features.shape[1], image_features.shape[2]) # n tk c
else:
image_features = self.mix_spatial_tokens(image_features) # nt k c
image_features = image_features.view(images.shape[0], images.shape[1], image_features.shape[1], image_features.shape[2]) # n t k c
clip_features = [x.to(self.device) for x in image_features]
image_features = self.project_features(image_features)
image_features = [x.to(self.device) for x in image_features]
elif images.ndim == 3:
modality_indicators = [2 for _ in range(images.shape[0])]
image_features = self.project_features(images).to(self.device)
else:
modality_indicators = [1 for _ in range(images.shape[0])]
clip_features, image_features = self.encode_images(images, base_mode)
clip_features = [x.to(self.device) for x in clip_features]
image_features = [x.to(self.device) for x in image_features]
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
indicators = torch.zeros_like(input_ids)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
indicators = [cur_indicators[cur_attention_mask] for cur_indicators, cur_attention_mask in zip(indicators, attention_mask)]
new_input_embeds = []
new_labels = []
new_indicators = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
new_indicators.append(indicators[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
cur_indicators = indicators[batch_idx]
cur_indicators_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
cur_indicators_noim.append(cur_indicators[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
cur_new_indicators = []
if True: # stage 2
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_new_indicators.append(cur_indicators_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
if hasattr(self.get_model().mm_projector, 'resolution'):
assert (cur_image_features.shape[0]-1) % resolution == 0
num_slot = (cur_image_features.shape[0]-1) // resolution * pool_num
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
tmp = modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype)
try:
tmp[-num_slot-1: -1] = 100
tmp[-1] = 200
except:
pass
cur_new_indicators.append(tmp)
# cur_new_indicators.append(modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype))
# cur_new_indicators.append(torch.ones((self.config.n_slot,), device=cur_indicators.device, dtype=cur_indicators.dtype)+1)
if False: # stage 1
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_new_indicators.append(cur_indicators_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
if hasattr(self.get_model().mm_projector, 'resolution'):
assert cur_image_features.shape[0] % resolution == 0
num_slot = cur_image_features.shape[0] // resolution * pool_num
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
tmp = modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype)
tmp[-num_slot:] = 100
cur_new_indicators.append(tmp)
# cur_new_indicators.append(modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype))
# cur_new_indicators.append(torch.ones((self.config.n_slot,), device=cur_indicators.device, dtype=cur_indicators.dtype)+1)
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
cur_new_indicators = torch.cat(cur_new_indicators)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
new_indicators.append(cur_new_indicators)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
new_indicators = [x[:tokenizer_model_max_length] for x in new_indicators]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
new_indicators_padded = torch.zeros((batch_size, max_len), dtype=new_indicators[0].dtype, device=new_indicators[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels, cur_new_indicators) in enumerate(zip(new_input_embeds, new_labels, new_indicators)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
new_indicators_padded[i, -cur_len:] = cur_new_indicators
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
new_indicators_padded[i, :cur_len] = cur_new_indicators
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
new_indicators = new_indicators_padded
# print('finish preparing labels multimodal')
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
if base_mode:
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
else:
return None, position_ids, attention_mask, past_key_values, new_input_embeds, clip_features, qs_embeds, qs_mask, (new_labels, new_indicators)
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
|