|
--- |
|
license: mit |
|
language: |
|
- zh |
|
- en |
|
base_model: |
|
- inclusionAI/Ling-lite-base-1.5 |
|
--- |
|
# Ring-lite-2506 |
|
|
|
<p align="center"> |
|
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/> |
|
<p> |
|
|
|
<p align="center"> |
|
π€ <a href="https://huggingface.co/inclusionAI">Hugging Face</a> |
|
<p> |
|
|
|
## Introduction |
|
|
|
Ring-lite-2506 is a lightweight, fully open-sourced MoE (Mixture of Experts) LLM designed for complex reasoning tasks. It is built upon the publicly available [Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) model, which has 16.8B parameters with 2.75B activated parameters. We use a joint training pipeline combining knowledge distillation with reinforcement learning, achieving performance comparable to state-of-the-art (SOTA) small-size reasoning models on challenging benchmarks (AIME, LiveCodeBench, and GPQA-Diamond) while activating only one-third of their parameters. |
|
|
|
|
|
|
|
## Model Downloads |
|
|
|
<div align="center"> |
|
|
|
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** | |
|
| :----------------: | :---------------: | :-------------------: | :----------------: | :----------: | |
|
| Ring-lite-2506 | 16.8B | 2.75B | 128K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ring-lite-2506) | |
|
|
|
</div> |
|
|
|
## Evaluation |
|
For a comprehensive evaluation of the quality of our reasoning models, we implemented automatic benchmarks to assess their performance including math, code and science. |
|
|
|
<p align="center"> |
|
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*iAXESaxrbDcAAAAATtAAAAgAemJ7AQ/original" width="1000"/> |
|
<p> |
|
|
|
|
|
|
|
More details are reported in our [technical report](https://arxiv.org/abs/2506.14731). |
|
|
|
## Quickstart |
|
|
|
### π€ Hugging Face Transformers |
|
Here is a code snippet to show you how to use the chat model with `transformers`: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "inclusionAI/Ring-lite-2506" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Give me a short introduction to large language models." |
|
messages = [ |
|
{"role": "system", "content": "You are Ring, an assistant created by inclusionAI"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=8192 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
## Dataset |
|
The training data of Ring-lite-2506 is release at [Ring-lite-sft-data](https://huggingface.co/datasets/inclusionAI/Ring-lite-sft-data) and [Ring-lite-rl-data](https://huggingface.co/datasets/inclusionAI/Ring-lite-rl-data). |
|
|
|
## Deployment |
|
Please refer to [GitHub](https://github.com/inclusionAI/Ring/blob/main/README.md) |
|
|
|
## License |
|
This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ring-lite-2506/blob/main/LICENSE). |
|
|
|
## Citation |
|
``` |
|
@misc{ringteam2025ringlitescalablereasoningc3postabilized, |
|
title={Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs}, |
|
author={Ling Team}, |
|
year={2025}, |
|
eprint={2506.14731}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2506.14731}, |
|
} |
|
``` |
|
|