impactframes/layerskip-llama3.2-1B-Q4_K_M-GGUF
This model was converted to GGUF format from facebook/layerskip-llama3.2-1B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo impactframes/layerskip-llama3.2-1B-Q4_K_M-GGUF --hf-file layerskip-llama3.2-1b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo impactframes/layerskip-llama3.2-1B-Q4_K_M-GGUF --hf-file layerskip-llama3.2-1b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo impactframes/layerskip-llama3.2-1B-Q4_K_M-GGUF --hf-file layerskip-llama3.2-1b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo impactframes/layerskip-llama3.2-1B-Q4_K_M-GGUF --hf-file layerskip-llama3.2-1b-q4_k_m.gguf -c 2048
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for impactframes/layerskip-llama3.2-1B-Q4_K_M-GGUF
Base model
meta-llama/Llama-3.2-1B
Finetuned
facebook/layerskip-llama3.2-1B
Evaluation results
- acc on BoolQself-reported0.646
- acc on PIQAself-reported0.724
- acc on SIQAself-reported0.419
- acc on HellaSwagself-reported0.455
- acc on WinoGrandeself-reported0.600
- acc on ARC (Easy)self-reported0.651
- acc on ARC (Easy)self-reported0.295
- acc on OpenBookQAself-reported0.258
- acc on RACEself-reported0.354
- acc on MMLUself-reported0.247