wav2vec2-large-mms-1b-DZ-kabyle-testt

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer: 1.0
  • Bleu: 0.0
  • Rouge: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Bleu Rouge
15.4732 1.0 146 inf 0.9998 {'bleu': 0.0, 'precisions': [0.0024630541871921183, 0.0, 0.0, 0.0], 'brevity_penalty': 0.0060533535353636545, 'length_ratio': 0.16374269005847952, 'translation_length': 812, 'reference_length': 4959} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
3.5259 2.0 292 inf 1.0 0.0 0.0
2.8886 3.0 438 inf 0.9256 {'bleu': 0.012706304633238194, 'precisions': [0.15207808564231737, 0.04889779559118237, 0.016554578375581996, 0.0049157303370786515], 'brevity_penalty': 0.4555685552993787, 'length_ratio': 0.5598448792526001, 'translation_length': 3176, 'reference_length': 5673} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.0962 4.0 584 inf 0.9552 {'bleu': 0.0051587494823155545, 'precisions': [0.13643331630045988, 0.0589159465828751, 0.022809123649459785, 0.007889546351084813], 'brevity_penalty': 0.1487530765061357, 'length_ratio': 0.34417868448821665, 'translation_length': 1957, 'reference_length': 5686} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.2088 5.0 730 inf 0.9165 {'bleu': 0.016805294416329334, 'precisions': [0.18280321565886054, 0.07291185971389016, 0.03056768558951965, 0.01073345259391771], 'brevity_penalty': 0.3674938907007195, 'length_ratio': 0.4997379912663755, 'translation_length': 2861, 'reference_length': 5725} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3138 6.0 876 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3795 7.0 1022 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3643 8.0 1168 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4279 9.0 1314 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4179 10.0 1460 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4451 11.0 1606 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4373 12.0 1752 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3163 13.0 1898 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011142061281337047, 0.02127659574468085, 0.0, 0.0], 'brevity_penalty': 0.0010822740953120335, 'length_ratio': 0.12773527842020993, 'translation_length': 718, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4059 14.0 2044 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.44 15.0 2190 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3549 16.0 2336 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4238 17.0 2482 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3961 18.0 2628 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4546 19.0 2774 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011204481792717087, 0.022727272727272728, 0.0, 0.0], 'brevity_penalty': 0.001041652610251504, 'length_ratio': 0.12711411785650703, 'translation_length': 714, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4024 20.0 2920 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.4229 21.0 3066 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3279 22.0 3212 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3955 23.0 3358 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3205 24.0 3504 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3394 25.0 3650 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3832 26.0 3796 inf 0.9986 {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3691 27.0 3942 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.02127659574468085, 0.0, 0.0], 'brevity_penalty': 0.0010765102889743517, 'length_ratio': 0.12764821078867722, 'translation_length': 717, 'reference_length': 5617} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
2.3989 28.0 4088 inf 0.9986 {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
0.0 29.0 4234 nan 1.0 0.0 0.0
0.0 30.0 4380 nan 1.0 0.0 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
965M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ilyes25/wav2vec2-large-mms-1b-DZ-kabyle-testt

Finetuned
(293)
this model