wav2vec2-large-mms-1b-DZ-kabyle-testt
This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0
- Bleu: 0.0
- Rouge: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | Rouge |
---|---|---|---|---|---|---|
15.4732 | 1.0 | 146 | inf | 0.9998 | {'bleu': 0.0, 'precisions': [0.0024630541871921183, 0.0, 0.0, 0.0], 'brevity_penalty': 0.0060533535353636545, 'length_ratio': 0.16374269005847952, 'translation_length': 812, 'reference_length': 4959} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
3.5259 | 2.0 | 292 | inf | 1.0 | 0.0 | 0.0 |
2.8886 | 3.0 | 438 | inf | 0.9256 | {'bleu': 0.012706304633238194, 'precisions': [0.15207808564231737, 0.04889779559118237, 0.016554578375581996, 0.0049157303370786515], 'brevity_penalty': 0.4555685552993787, 'length_ratio': 0.5598448792526001, 'translation_length': 3176, 'reference_length': 5673} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.0962 | 4.0 | 584 | inf | 0.9552 | {'bleu': 0.0051587494823155545, 'precisions': [0.13643331630045988, 0.0589159465828751, 0.022809123649459785, 0.007889546351084813], 'brevity_penalty': 0.1487530765061357, 'length_ratio': 0.34417868448821665, 'translation_length': 1957, 'reference_length': 5686} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.2088 | 5.0 | 730 | inf | 0.9165 | {'bleu': 0.016805294416329334, 'precisions': [0.18280321565886054, 0.07291185971389016, 0.03056768558951965, 0.01073345259391771], 'brevity_penalty': 0.3674938907007195, 'length_ratio': 0.4997379912663755, 'translation_length': 2861, 'reference_length': 5725} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3138 | 6.0 | 876 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3795 | 7.0 | 1022 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3643 | 8.0 | 1168 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4279 | 9.0 | 1314 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4179 | 10.0 | 1460 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4451 | 11.0 | 1606 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4373 | 12.0 | 1752 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3163 | 13.0 | 1898 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011142061281337047, 0.02127659574468085, 0.0, 0.0], 'brevity_penalty': 0.0010822740953120335, 'length_ratio': 0.12773527842020993, 'translation_length': 718, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4059 | 14.0 | 2044 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.44 | 15.0 | 2190 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3549 | 16.0 | 2336 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4238 | 17.0 | 2482 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010588639835161769, 'length_ratio': 0.12737946984522328, 'translation_length': 716, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3961 | 18.0 | 2628 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4546 | 19.0 | 2774 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011204481792717087, 0.022727272727272728, 0.0, 0.0], 'brevity_penalty': 0.001041652610251504, 'length_ratio': 0.12711411785650703, 'translation_length': 714, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4024 | 20.0 | 2920 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.4229 | 21.0 | 3066 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3279 | 22.0 | 3212 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3955 | 23.0 | 3358 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011188811188811189, 0.022222222222222223, 0.0, 0.0], 'brevity_penalty': 0.0010531769082091937, 'length_ratio': 0.1272921488338971, 'translation_length': 715, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3205 | 24.0 | 3504 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3394 | 25.0 | 3650 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3832 | 26.0 | 3796 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.0111731843575419, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.0010647959791569663, 'length_ratio': 0.12747017981128717, 'translation_length': 716, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3691 | 27.0 | 3942 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.02127659574468085, 0.0, 0.0], 'brevity_penalty': 0.0010765102889743517, 'length_ratio': 0.12764821078867722, 'translation_length': 717, 'reference_length': 5617} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
2.3989 | 28.0 | 4088 | inf | 0.9986 | {'bleu': 0.0, 'precisions': [0.011157601115760111, 0.021739130434782608, 0.0, 0.0], 'brevity_penalty': 0.001070521373788099, 'length_ratio': 0.1275573741327166, 'translation_length': 717, 'reference_length': 5621} | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
0.0 | 29.0 | 4234 | nan | 1.0 | 0.0 | 0.0 |
0.0 | 30.0 | 4380 | nan | 1.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ilyes25/wav2vec2-large-mms-1b-DZ-kabyle-testt
Base model
facebook/mms-1b-all