|
from datasets import load_dataset |
|
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments |
|
import torch |
|
|
|
|
|
dataset = load_dataset("ilyada/web_accessibility_dataset") |
|
|
|
|
|
model_name = "bert-base-uncased" |
|
tokenizer = BertTokenizer.from_pretrained(model_name) |
|
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2) |
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], padding="max_length", truncation=True) |
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
train_test_split = tokenized_datasets["train"].train_test_split(test_size=0.2) |
|
train_dataset = train_test_split['train'] |
|
test_dataset = train_test_split['test'] |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
push_to_hub=True, # This enables pushing the model to Hugging Face Hub |
|
hub_model_id="ilyada/web_accessibility_model", # LLM generated dataset |
|
hub_strategy="end", |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=test_dataset, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
results = trainer.evaluate() |
|
print(results) |
|
|
|
|
|
trainer.push_to_hub() |