from datasets import load_dataset from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments import torch # Load the dataset dataset = load_dataset("ilyada/web_accessibility_dataset") # Load pre-trained model and tokenizer model_name = "bert-base-uncased" tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2) # Tokenize the dataset def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Split the dataset into train and test train_test_split = tokenized_datasets["train"].train_test_split(test_size=0.2) train_dataset = train_test_split['train'] test_dataset = train_test_split['test'] # Define training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, push_to_hub=True, # This enables pushing the model to Hugging Face Hub hub_model_id="ilyada/web_accessibility_model", # LLM generated dataset hub_strategy="end", ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, ) # Train the model trainer.train() # Evaluate the model results = trainer.evaluate() print(results) # Push model to Hugging Face Hub trainer.push_to_hub()