|
--- |
|
datasets: |
|
- Ar4ikov/civitai-sd-337k |
|
language: |
|
- en |
|
pipeline_tag: image-to-text |
|
base_model: nlpconnect/vit-gpt2-image-captioning |
|
license: apache-2.0 |
|
--- |
|
|
|
# Overview |
|
|
|
The `ifmain/vit-gpt2-image2promt-stable-diffusion` model builds upon [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) and is trained on the [Ar4ikov/civitai-sd-337k](https://huggingface.co/datasets/Ar4ikov/civitai-sd-337k) dataset, which includes 2,000 images. This model is specifically designed to generate text descriptions of images in a format suitable for prompts used with Stable Diffusion models. |
|
|
|
Training was conducted using the [Vit-GPT-Easy-Trainer](https://github.com/ifmain/Vit-GPT-Easy-Trainer) code. |
|
|
|
# Example Usage |
|
|
|
```python |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
import re |
|
import requests |
|
|
|
def prepare(text): |
|
text = re.sub(r'<[^>]*>', '', text) |
|
text = ','.join(list(set(text.split(',')))[:-1]) |
|
for i in range(5): |
|
if text[0]==',' or text[0]==' ': |
|
text=text[1:] |
|
|
|
return text |
|
|
|
path_to_model = "ifmain/vit-gpt2-image2promt-stable-diffusion" |
|
|
|
model = VisionEncoderDecoderModel.from_pretrained(path_to_model) |
|
feature_extractor = ViTImageProcessor.from_pretrained(path_to_model) |
|
tokenizer = AutoTokenizer.from_pretrained(path_to_model) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
max_length = 256 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
|
|
|
def predict_step(image_paths): |
|
images = [] |
|
for image_path in image_paths: |
|
if 'http' in image_path: |
|
i_image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') |
|
else: |
|
i_image = Image.open(image_path).convert('RGB') |
|
images.append(i_image) |
|
|
|
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [prepare(pred).strip() for pred in preds] |
|
return preds |
|
|
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' |
|
result = predict_step([img_url]) # ['red shirt, chromatic aberration, light emitting object, barefoot, best quality, ocean background, 1girl, 8k wallpaper, intricate details, chromatic light, light, ocean, backpack, ultra-detailed, ocean light,masterpiece'] |
|
print(result) |
|
``` |
|
|
|
## Additional Information |
|
|
|
This model supports both SFW and NSFW content. |