ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("iamkpi/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'the dispensary, where he went after he was shot. \nAs a witness for the State, Detective Victor Liu of the Baltimore Police Department \ntestified that, on September 3, 2021, he responded to a report of “a shooting incident in the \n3900 block of Falls Road.” There, Detective Liu saw an SUV with bullet holes in the back',
'What did Detective Liu see at the scene of the shooting incident?',
'Is the Commission considered an agency under § 551(1)?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5209 |
cosine_accuracy@3 | 0.5873 |
cosine_accuracy@5 | 0.7002 |
cosine_accuracy@10 | 0.7651 |
cosine_precision@1 | 0.5209 |
cosine_precision@3 | 0.4956 |
cosine_precision@5 | 0.3913 |
cosine_precision@10 | 0.2331 |
cosine_recall@1 | 0.1928 |
cosine_recall@3 | 0.5012 |
cosine_recall@5 | 0.6439 |
cosine_recall@10 | 0.7571 |
cosine_ndcg@10 | 0.6492 |
cosine_mrr@10 | 0.5807 |
cosine_map@100 | 0.6256 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5317 |
cosine_accuracy@3 | 0.5765 |
cosine_accuracy@5 | 0.6739 |
cosine_accuracy@10 | 0.7558 |
cosine_precision@1 | 0.5317 |
cosine_precision@3 | 0.4992 |
cosine_precision@5 | 0.383 |
cosine_precision@10 | 0.2295 |
cosine_recall@1 | 0.1937 |
cosine_recall@3 | 0.5009 |
cosine_recall@5 | 0.6256 |
cosine_recall@10 | 0.7465 |
cosine_ndcg@10 | 0.6441 |
cosine_mrr@10 | 0.5823 |
cosine_map@100 | 0.6232 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4853 |
cosine_accuracy@3 | 0.5363 |
cosine_accuracy@5 | 0.6306 |
cosine_accuracy@10 | 0.7156 |
cosine_precision@1 | 0.4853 |
cosine_precision@3 | 0.456 |
cosine_precision@5 | 0.3518 |
cosine_precision@10 | 0.2133 |
cosine_recall@1 | 0.1788 |
cosine_recall@3 | 0.4624 |
cosine_recall@5 | 0.5791 |
cosine_recall@10 | 0.6971 |
cosine_ndcg@10 | 0.5963 |
cosine_mrr@10 | 0.5358 |
cosine_map@100 | 0.5799 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4142 |
cosine_accuracy@3 | 0.4683 |
cosine_accuracy@5 | 0.5502 |
cosine_accuracy@10 | 0.6476 |
cosine_precision@1 | 0.4142 |
cosine_precision@3 | 0.3962 |
cosine_precision@5 | 0.3116 |
cosine_precision@10 | 0.1944 |
cosine_recall@1 | 0.1495 |
cosine_recall@3 | 0.3967 |
cosine_recall@5 | 0.5081 |
cosine_recall@10 | 0.6319 |
cosine_ndcg@10 | 0.5275 |
cosine_mrr@10 | 0.4655 |
cosine_map@100 | 0.5099 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2952 |
cosine_accuracy@3 | 0.3416 |
cosine_accuracy@5 | 0.4142 |
cosine_accuracy@10 | 0.493 |
cosine_precision@1 | 0.2952 |
cosine_precision@3 | 0.2849 |
cosine_precision@5 | 0.2291 |
cosine_precision@10 | 0.1485 |
cosine_recall@1 | 0.1081 |
cosine_recall@3 | 0.2885 |
cosine_recall@5 | 0.3776 |
cosine_recall@10 | 0.4825 |
cosine_ndcg@10 | 0.3937 |
cosine_mrr@10 | 0.3396 |
cosine_map@100 | 0.385 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 26 tokens
- mean: 96.36 tokens
- max: 170 tokens
- min: 8 tokens
- mean: 16.47 tokens
- max: 32 tokens
- Samples:
positive anchor the same time they would if they were assigned the original requests.” Id. at 11–12.
The plaintiff responds by focusing on the factual underpinnings of the CIA’s policy
arguments—in particular the CIA’s contentions about “undue burden.” See Pl.’s 443 Cross-Mot.
Mem. at 2–7. For example, the plaintiff points out that the CIA waives FOIA fees “‘as an act ofWhat is one argument the plaintiff critiques regarding the CIA's policy?
contends that, “[i]n order to be properly withheld [under Exemption 2], the information must be
of a relatively trivial nature.” Id. (citing Dep’t of Air Force v. Rose, 425 U.S. 352, 369–70
(1976) and Lesar v. DOJ, 636 F.2d 472, 485 (D.C. Cir. 1980)). This triviality requirement
applies, according to plaintiff, because the rationale for Exemption 2 is “that the very task ofWhat does the plaintiff assert as the rationale for Exemption 2?
the shooting.2 The video was 1 minute and 51 seconds long.
Before admission of the video, Mr. Zimmerman testified that, in the months prior
to the shooting, he had suspected Mr. Mooney of sleeping with his girlfriend, but Mr.
Mooney had denied the allegation. Mr. Zimmerman testified that, on the night of theWhat did Mr. Mooney do in response to the allegation?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 5.4341 | - | - | - | - | - |
1.0 | 12 | - | 0.5894 | 0.5880 | 0.5425 | 0.4581 | 0.3261 |
1.7033 | 20 | 2.535 | - | - | - | - | - |
2.0 | 24 | - | 0.6310 | 0.6275 | 0.5876 | 0.5039 | 0.3711 |
2.5275 | 30 | 1.854 | - | - | - | - | - |
3.0 | 36 | - | 0.6456 | 0.6400 | 0.5952 | 0.5206 | 0.3938 |
3.3516 | 40 | 1.7104 | - | - | - | - | - |
4.0 | 48 | - | 0.6492 | 0.6441 | 0.5963 | 0.5275 | 0.3937 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.54.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for iamkpi/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.521
- Cosine Accuracy@3 on dim 768self-reported0.587
- Cosine Accuracy@5 on dim 768self-reported0.700
- Cosine Accuracy@10 on dim 768self-reported0.765
- Cosine Precision@1 on dim 768self-reported0.521
- Cosine Precision@3 on dim 768self-reported0.496
- Cosine Precision@5 on dim 768self-reported0.391
- Cosine Precision@10 on dim 768self-reported0.233
- Cosine Recall@1 on dim 768self-reported0.193
- Cosine Recall@3 on dim 768self-reported0.501