alignedthreeattn / utils /segmentation_utils.py
huzey's picture
upload
7acde1f
import torch
import matplotlib.cm
import skimage.io
import skimage.feature
import skimage.filters
import numpy as np
import os
from collections import OrderedDict
import glob
from sklearn.metrics import f1_score, average_precision_score
from sklearn.metrics import precision_recall_curve, roc_curve
SMOOTH = 1e-6
def get_iou(outputs: torch.Tensor, labels: torch.Tensor):
# You can comment out this line if you are passing tensors of equal shape
# But if you are passing output from UNet or something it will most probably
# be with the BATCH x 1 x H x W shape
outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W
labels = labels.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W
intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0
union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0
iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0
return iou.cpu().numpy()
def get_f1_scores(predict, target, ignore_index=-1):
# Tensor process
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target.data.cpu().numpy().reshape(-1)
pb = predict[target != ignore_index].reshape(batch_size, -1)
tb = target[target != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(np.nan_to_num(f1_score(t, p)))
return total
def get_roc(predict, target, ignore_index=-1):
target_expand = target.unsqueeze(1).expand_as(predict)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = target.unsqueeze(1).clamp(min=0)
target_1hot = x.scatter_(1, t, 1)
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target_1hot.data.cpu().numpy().reshape(-1)
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1)
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(roc_curve(t, p))
return total
def get_pr(predict, target, ignore_index=-1):
target_expand = target.unsqueeze(1).expand_as(predict)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = target.unsqueeze(1).clamp(min=0)
target_1hot = x.scatter_(1, t, 1)
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target_1hot.data.cpu().numpy().reshape(-1)
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1)
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(precision_recall_curve(t, p))
return total
def get_ap_scores(predict, target, ignore_index=-1):
total = []
for pred, tgt in zip(predict, target):
target_expand = tgt.unsqueeze(0).expand_as(pred)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = tgt.unsqueeze(0).clamp(min=0).long()
target_1hot = x.scatter_(0, t, 1)
predict_flat = pred.data.cpu().numpy().reshape(-1)
target_flat = target_1hot.data.cpu().numpy().reshape(-1)
p = predict_flat[target_expand_numpy != ignore_index]
t = target_flat[target_expand_numpy != ignore_index]
total.append(np.nan_to_num(average_precision_score(t, p)))
return total
def get_ap_multiclass(predict, target):
total = []
for pred, tgt in zip(predict, target):
predict_flat = pred.data.cpu().numpy().reshape(-1)
target_flat = tgt.data.cpu().numpy().reshape(-1)
total.append(np.nan_to_num(average_precision_score(target_flat, predict_flat)))
return total
def batch_precision_recall(predict, target, thr=0.5):
"""Batch Precision Recall
Args:
predict: input 4D tensor
target: label 4D tensor
"""
# _, predict = torch.max(predict, 1)
predict = predict > thr
predict = predict.data.cpu().numpy() + 1
target = target.data.cpu().numpy() + 1
tp = np.sum(((predict == 2) * (target == 2)) * (target > 0))
fp = np.sum(((predict == 2) * (target == 1)) * (target > 0))
fn = np.sum(((predict == 1) * (target == 2)) * (target > 0))
precision = float(np.nan_to_num(tp / (tp + fp)))
recall = float(np.nan_to_num(tp / (tp + fn)))
return precision, recall
def batch_pix_accuracy(predict, target):
"""Batch Pixel Accuracy
Args:
predict: input 3D tensor
target: label 3D tensor
"""
# for thr in np.linspace(0, 1, slices):
_, predict = torch.max(predict, 0)
predict = predict.cpu().numpy() + 1
target = target.cpu().numpy() + 1
pixel_labeled = np.sum(target > 0)
pixel_correct = np.sum((predict == target) * (target > 0))
assert pixel_correct <= pixel_labeled, \
"Correct area should be smaller than Labeled"
return pixel_correct, pixel_labeled
def batch_intersection_union(predict, target, nclass):
"""Batch Intersection of Union
Args:
predict: input 3D tensor
target: label 3D tensor
nclass: number of categories (int)
"""
_, predict = torch.max(predict, 0)
mini = 1
maxi = nclass
nbins = nclass
predict = predict.cpu().numpy() + 1
target = target.cpu().numpy() + 1
predict = predict * (target > 0).astype(predict.dtype)
intersection = predict * (predict == target)
# areas of intersection and union
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
area_union = area_pred + area_lab - area_inter
assert (area_inter <= area_union).all(), \
"Intersection area should be smaller than Union area"
return area_inter, area_union
def pixel_accuracy(im_pred, im_lab):
# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
pixel_labeled = np.sum(im_lab > 0)
pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
# pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
return pixel_correct, pixel_labeled
def intersection_and_union(im_pred, im_lab, num_class):
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
im_pred = im_pred * (im_lab > 0)
# Compute area intersection:
intersection = im_pred * (im_pred == im_lab)
area_inter, _ = np.histogram(intersection, bins=num_class - 1,
range=(1, num_class - 1))
# Compute area union:
area_pred, _ = np.histogram(im_pred, bins=num_class - 1,
range=(1, num_class - 1))
area_lab, _ = np.histogram(im_lab, bins=num_class - 1,
range=(1, num_class - 1))
area_union = area_pred + area_lab - area_inter
return area_inter, area_union
class Saver(object):
def __init__(self, args):
self.args = args
self.directory = os.path.join('run', args.train_dataset, args.model)
self.runs = sorted(glob.glob(os.path.join(self.directory, 'experiment_*')))
run_id = int(self.runs[-1].split('_')[-1]) + 1 if self.runs else 0
self.experiment_dir = os.path.join(self.directory, 'experiment_{}'.format(str(run_id)))
if not os.path.exists(self.experiment_dir):
os.makedirs(self.experiment_dir)
def save_checkpoint(self, state, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
filename = os.path.join(self.experiment_dir, filename)
torch.save(state, filename)
def save_experiment_config(self):
logfile = os.path.join(self.experiment_dir, 'parameters.txt')
log_file = open(logfile, 'w')
p = OrderedDict()
p['train_dataset'] = self.args.train_dataset
p['lr'] = self.args.lr
p['epoch'] = self.args.epochs
for key, val in p.items():
log_file.write(key + ':' + str(val) + '\n')
log_file.close()
class Metric(object):
"""Base class for all metrics.
From: https://github.com/pytorch/tnt/blob/master/torchnet/meter/meter.py
"""
def reset(self):
pass
def add(self):
pass
def value(self):
pass
class ConfusionMatrix(Metric):
"""Constructs a confusion matrix for a multi-class classification problems.
Does not support multi-label, multi-class problems.
Keyword arguments:
- num_classes (int): number of classes in the classification problem.
- normalized (boolean, optional): Determines whether or not the confusion
matrix is normalized or not. Default: False.
Modified from: https://github.com/pytorch/tnt/blob/master/torchnet/meter/confusionmeter.py
"""
def __init__(self, num_classes, normalized=False):
super().__init__()
self.conf = np.ndarray((num_classes, num_classes), dtype=np.int32)
self.normalized = normalized
self.num_classes = num_classes
self.reset()
def reset(self):
self.conf.fill(0)
def add(self, predicted, target):
"""Computes the confusion matrix
The shape of the confusion matrix is K x K, where K is the number
of classes.
Keyword arguments:
- predicted (Tensor or numpy.ndarray): Can be an N x K tensor/array of
predicted scores obtained from the model for N examples and K classes,
or an N-tensor/array of integer values between 0 and K-1.
- target (Tensor or numpy.ndarray): Can be an N x K tensor/array of
ground-truth classes for N examples and K classes, or an N-tensor/array
of integer values between 0 and K-1.
"""
# If target and/or predicted are tensors, convert them to numpy arrays
if torch.is_tensor(predicted):
predicted = predicted.cpu().numpy()
if torch.is_tensor(target):
target = target.cpu().numpy()
assert predicted.shape[0] == target.shape[0], \
'number of targets and predicted outputs do not match'
if np.ndim(predicted) != 1:
assert predicted.shape[1] == self.num_classes, \
'number of predictions does not match size of confusion matrix'
predicted = np.argmax(predicted, 1)
else:
assert (predicted.max() < self.num_classes) and (predicted.min() >= 0), \
'predicted values are not between 0 and k-1'
if np.ndim(target) != 1:
assert target.shape[1] == self.num_classes, \
'Onehot target does not match size of confusion matrix'
assert (target >= 0).all() and (target <= 1).all(), \
'in one-hot encoding, target values should be 0 or 1'
assert (target.sum(1) == 1).all(), \
'multi-label setting is not supported'
target = np.argmax(target, 1)
else:
assert (target.max() < self.num_classes) and (target.min() >= 0), \
'target values are not between 0 and k-1'
# hack for bincounting 2 arrays together
x = predicted + self.num_classes * target
bincount_2d = np.bincount(
x.astype(np.int32), minlength=self.num_classes**2)
assert bincount_2d.size == self.num_classes**2
conf = bincount_2d.reshape((self.num_classes, self.num_classes))
self.conf += conf
def value(self):
"""
Returns:
Confustion matrix of K rows and K columns, where rows corresponds
to ground-truth targets and columns corresponds to predicted
targets.
"""
if self.normalized:
conf = self.conf.astype(np.float32)
return conf / conf.sum(1).clip(min=1e-12)[:, None]
else:
return self.conf
def vec2im(V, shape=()):
'''
Transform an array V into a specified shape - or if no shape is given assume a square output format.
Parameters
----------
V : numpy.ndarray
an array either representing a matrix or vector to be reshaped into an two-dimensional image
shape : tuple or list
optional. containing the shape information for the output array if not given, the output is assumed to be square
Returns
-------
W : numpy.ndarray
with W.shape = shape or W.shape = [np.sqrt(V.size)]*2
'''
if len(shape) < 2:
shape = [np.sqrt(V.size)] * 2
shape = map(int, shape)
return np.reshape(V, shape)
def enlarge_image(img, scaling=3):
'''
Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction.
Parameters
----------
img : numpy.ndarray
array of shape [H x W] OR [H x W x D]
scaling : int
positive integer value > 0
Returns
-------
out : numpy.ndarray
two-dimensional array of shape [scaling*H x scaling*W]
OR
three-dimensional array of shape [scaling*H x scaling*W x D]
depending on the dimensionality of the input
'''
if scaling < 1 or not isinstance(scaling, int):
print('scaling factor needs to be an int >= 1')
if len(img.shape) == 2:
H, W = img.shape
out = np.zeros((scaling * H, scaling * W))
for h in range(H):
fh = scaling * h
for w in range(W):
fw = scaling * w
out[fh:fh + scaling, fw:fw + scaling] = img[h, w]
elif len(img.shape) == 3:
H, W, D = img.shape
out = np.zeros((scaling * H, scaling * W, D))
for h in range(H):
fh = scaling * h
for w in range(W):
fw = scaling * w
out[fh:fh + scaling, fw:fw + scaling, :] = img[h, w, :]
return out
def repaint_corner_pixels(rgbimg, scaling=3):
'''
DEPRECATED/OBSOLETE.
Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups).
The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling.
Assumes those image ares will pretty much never show evidence.
Parameters
----------
rgbimg : numpy.ndarray
array of shape [H x W x 3]
scaling : int
positive integer value > 0
Returns
-------
rgbimg : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3]
'''
# top left corner.
rgbimg[0:scaling, 0:scaling, :] = (rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling,
:]) / 3.0
# bottom right corner
rgbimg[-scaling:, -scaling:, :] = (rgbimg[-1, -1 - scaling, :] + rgbimg[-1 - scaling, -1, :] + rgbimg[-1 - scaling,
-1 - scaling,
:]) / 3.0
return rgbimg
def digit_to_rgb(X, scaling=3, shape=(), cmap='binary'):
'''
Takes as input an intensity array and produces a rgb image due to some color map
Parameters
----------
X : numpy.ndarray
intensity matrix as array of shape [M x N]
scaling : int
optional. positive integer value > 0
shape: tuple or list of its , length = 2
optional. if not given, X is reshaped to be square.
cmap : str
name of color map of choice. default is 'binary'
Returns
-------
image : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
'''
# create color map object from name string
cmap = eval('matplotlib.cm.{}'.format(cmap))
image = enlarge_image(vec2im(X, shape), scaling) # enlarge
image = cmap(image.flatten())[..., 0:3].reshape([image.shape[0], image.shape[1], 3]) # colorize, reshape
return image
def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap='bwr', normalize=True):
'''
Takes as input an intensity array and produces a rgb image for the represented heatmap.
optionally draws the outline of another input on top of it.
Parameters
----------
R : numpy.ndarray
the heatmap to be visualized, shaped [M x N]
X : numpy.ndarray
optional. some input, usually the data point for which the heatmap R is for, which shall serve
as a template for a black outline to be drawn on top of the image
shaped [M x N]
scaling: int
factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness)
after reshaping it using shape.
shape: tuple or list, length = 2
optional. if not given, X is reshaped to be square.
sigma : double
optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines.
cmap : str
optional. color map of choice
normalize : bool
optional. whether to normalize the heatmap to [-1 1] prior to colorization or not.
Returns
-------
rgbimg : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
'''
# create color map object from name string
cmap = eval('matplotlib.cm.{}'.format(cmap))
if normalize:
R = R / np.max(np.abs(R)) # normalize to [-1,1] wrt to max relevance magnitude
R = (R + 1.) / 2. # shift/normalize to [0,1] for color mapping
R = enlarge_image(R, scaling)
rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3])
# rgb = repaint_corner_pixels(rgb, scaling) #obsolete due to directly calling the color map with [0,1]-normalized inputs
if not X is None: # compute the outline of the input
# X = enlarge_image(vec2im(X,shape), scaling)
xdims = X.shape
Rdims = R.shape
return rgb
def save_image(rgb_images, path, gap=2):
'''
Takes as input a list of rgb images, places them next to each other with a gap and writes out the result.
Parameters
----------
rgb_images : list , tuple, collection. such stuff
each item in the collection is expected to be an rgb image of dimensions [H x _ x 3]
where the width is variable
path : str
the output path of the assembled image
gap : int
optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images
Returns
-------
image : numpy.ndarray
the assembled image as written out to path
'''
sz = []
image = []
for i in range(len(rgb_images)):
if not sz:
sz = rgb_images[i].shape
image = rgb_images[i]
gap = np.zeros((sz[0], gap, sz[2]))
continue
if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]:
print('image', i, 'differs in size. unable to perform horizontal alignment')
print('expected: Hx_xD = {0}x_x{1}'.format(sz[0], sz[1]))
print('got : Hx_xD = {0}x_x{1}'.format(rgb_images[i].shape[0], rgb_images[i].shape[1]))
print('skipping image\n')
else:
image = np.hstack((image, gap, rgb_images[i]))
image *= 255
image = image.astype(np.uint8)
print('saving image to ', path)
skimage.io.imsave(path, image)
return image
class IoU(Metric):
"""Computes the intersection over union (IoU) per class and corresponding
mean (mIoU).
Intersection over union (IoU) is a common evaluation metric for semantic
segmentation. The predictions are first accumulated in a confusion matrix
and the IoU is computed from it as follows:
IoU = true_positive / (true_positive + false_positive + false_negative).
Keyword arguments:
- num_classes (int): number of classes in the classification problem
- normalized (boolean, optional): Determines whether or not the confusion
matrix is normalized or not. Default: False.
- ignore_index (int or iterable, optional): Index of the classes to ignore
when computing the IoU. Can be an int, or any iterable of ints.
"""
def __init__(self, num_classes, normalized=False, ignore_index=None):
super().__init__()
self.conf_metric = ConfusionMatrix(num_classes, normalized)
if ignore_index is None:
self.ignore_index = None
elif isinstance(ignore_index, int):
self.ignore_index = (ignore_index,)
else:
try:
self.ignore_index = tuple(ignore_index)
except TypeError:
raise ValueError("'ignore_index' must be an int or iterable")
def reset(self):
self.conf_metric.reset()
def add(self, predicted, target):
"""Adds the predicted and target pair to the IoU metric.
Keyword arguments:
- predicted (Tensor): Can be a (N, K, H, W) tensor of
predicted scores obtained from the model for N examples and K classes,
or (N, H, W) tensor of integer values between 0 and K-1.
- target (Tensor): Can be a (N, K, H, W) tensor of
target scores for N examples and K classes, or (N, H, W) tensor of
integer values between 0 and K-1.
"""
# Dimensions check
assert predicted.size(0) == target.size(0), \
'number of targets and predicted outputs do not match'
assert predicted.dim() == 3 or predicted.dim() == 4, \
"predictions must be of dimension (N, H, W) or (N, K, H, W)"
assert target.dim() == 3 or target.dim() == 4, \
"targets must be of dimension (N, H, W) or (N, K, H, W)"
# If the tensor is in categorical format convert it to integer format
if predicted.dim() == 4:
_, predicted = predicted.max(1)
if target.dim() == 4:
_, target = target.max(1)
self.conf_metric.add(predicted.view(-1), target.view(-1))
def value(self):
"""Computes the IoU and mean IoU.
The mean computation ignores NaN elements of the IoU array.
Returns:
Tuple: (IoU, mIoU). The first output is the per class IoU,
for K classes it's numpy.ndarray with K elements. The second output,
is the mean IoU.
"""
conf_matrix = self.conf_metric.value()
if self.ignore_index is not None:
for index in self.ignore_index:
conf_matrix[:, self.ignore_index] = 0
conf_matrix[self.ignore_index, :] = 0
true_positive = np.diag(conf_matrix)
false_positive = np.sum(conf_matrix, 0) - true_positive
false_negative = np.sum(conf_matrix, 1) - true_positive
# Just in case we get a division by 0, ignore/hide the error
with np.errstate(divide='ignore', invalid='ignore'):
iou = true_positive / (true_positive + false_positive + false_negative)
return iou, np.nanmean(iou)