File size: 23,723 Bytes
7acde1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import torch
import matplotlib.cm
import skimage.io
import skimage.feature
import skimage.filters
import numpy as np
import os
from collections import OrderedDict
import glob
from sklearn.metrics import f1_score, average_precision_score
from sklearn.metrics import precision_recall_curve, roc_curve
SMOOTH = 1e-6
def get_iou(outputs: torch.Tensor, labels: torch.Tensor):
# You can comment out this line if you are passing tensors of equal shape
# But if you are passing output from UNet or something it will most probably
# be with the BATCH x 1 x H x W shape
outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W
labels = labels.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W
intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0
union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0
iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0
return iou.cpu().numpy()
def get_f1_scores(predict, target, ignore_index=-1):
# Tensor process
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target.data.cpu().numpy().reshape(-1)
pb = predict[target != ignore_index].reshape(batch_size, -1)
tb = target[target != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(np.nan_to_num(f1_score(t, p)))
return total
def get_roc(predict, target, ignore_index=-1):
target_expand = target.unsqueeze(1).expand_as(predict)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = target.unsqueeze(1).clamp(min=0)
target_1hot = x.scatter_(1, t, 1)
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target_1hot.data.cpu().numpy().reshape(-1)
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1)
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(roc_curve(t, p))
return total
def get_pr(predict, target, ignore_index=-1):
target_expand = target.unsqueeze(1).expand_as(predict)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = target.unsqueeze(1).clamp(min=0)
target_1hot = x.scatter_(1, t, 1)
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target_1hot.data.cpu().numpy().reshape(-1)
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1)
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(precision_recall_curve(t, p))
return total
def get_ap_scores(predict, target, ignore_index=-1):
total = []
for pred, tgt in zip(predict, target):
target_expand = tgt.unsqueeze(0).expand_as(pred)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = tgt.unsqueeze(0).clamp(min=0).long()
target_1hot = x.scatter_(0, t, 1)
predict_flat = pred.data.cpu().numpy().reshape(-1)
target_flat = target_1hot.data.cpu().numpy().reshape(-1)
p = predict_flat[target_expand_numpy != ignore_index]
t = target_flat[target_expand_numpy != ignore_index]
total.append(np.nan_to_num(average_precision_score(t, p)))
return total
def get_ap_multiclass(predict, target):
total = []
for pred, tgt in zip(predict, target):
predict_flat = pred.data.cpu().numpy().reshape(-1)
target_flat = tgt.data.cpu().numpy().reshape(-1)
total.append(np.nan_to_num(average_precision_score(target_flat, predict_flat)))
return total
def batch_precision_recall(predict, target, thr=0.5):
"""Batch Precision Recall
Args:
predict: input 4D tensor
target: label 4D tensor
"""
# _, predict = torch.max(predict, 1)
predict = predict > thr
predict = predict.data.cpu().numpy() + 1
target = target.data.cpu().numpy() + 1
tp = np.sum(((predict == 2) * (target == 2)) * (target > 0))
fp = np.sum(((predict == 2) * (target == 1)) * (target > 0))
fn = np.sum(((predict == 1) * (target == 2)) * (target > 0))
precision = float(np.nan_to_num(tp / (tp + fp)))
recall = float(np.nan_to_num(tp / (tp + fn)))
return precision, recall
def batch_pix_accuracy(predict, target):
"""Batch Pixel Accuracy
Args:
predict: input 3D tensor
target: label 3D tensor
"""
# for thr in np.linspace(0, 1, slices):
_, predict = torch.max(predict, 0)
predict = predict.cpu().numpy() + 1
target = target.cpu().numpy() + 1
pixel_labeled = np.sum(target > 0)
pixel_correct = np.sum((predict == target) * (target > 0))
assert pixel_correct <= pixel_labeled, \
"Correct area should be smaller than Labeled"
return pixel_correct, pixel_labeled
def batch_intersection_union(predict, target, nclass):
"""Batch Intersection of Union
Args:
predict: input 3D tensor
target: label 3D tensor
nclass: number of categories (int)
"""
_, predict = torch.max(predict, 0)
mini = 1
maxi = nclass
nbins = nclass
predict = predict.cpu().numpy() + 1
target = target.cpu().numpy() + 1
predict = predict * (target > 0).astype(predict.dtype)
intersection = predict * (predict == target)
# areas of intersection and union
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
area_union = area_pred + area_lab - area_inter
assert (area_inter <= area_union).all(), \
"Intersection area should be smaller than Union area"
return area_inter, area_union
def pixel_accuracy(im_pred, im_lab):
# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
pixel_labeled = np.sum(im_lab > 0)
pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
# pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
return pixel_correct, pixel_labeled
def intersection_and_union(im_pred, im_lab, num_class):
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
im_pred = im_pred * (im_lab > 0)
# Compute area intersection:
intersection = im_pred * (im_pred == im_lab)
area_inter, _ = np.histogram(intersection, bins=num_class - 1,
range=(1, num_class - 1))
# Compute area union:
area_pred, _ = np.histogram(im_pred, bins=num_class - 1,
range=(1, num_class - 1))
area_lab, _ = np.histogram(im_lab, bins=num_class - 1,
range=(1, num_class - 1))
area_union = area_pred + area_lab - area_inter
return area_inter, area_union
class Saver(object):
def __init__(self, args):
self.args = args
self.directory = os.path.join('run', args.train_dataset, args.model)
self.runs = sorted(glob.glob(os.path.join(self.directory, 'experiment_*')))
run_id = int(self.runs[-1].split('_')[-1]) + 1 if self.runs else 0
self.experiment_dir = os.path.join(self.directory, 'experiment_{}'.format(str(run_id)))
if not os.path.exists(self.experiment_dir):
os.makedirs(self.experiment_dir)
def save_checkpoint(self, state, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
filename = os.path.join(self.experiment_dir, filename)
torch.save(state, filename)
def save_experiment_config(self):
logfile = os.path.join(self.experiment_dir, 'parameters.txt')
log_file = open(logfile, 'w')
p = OrderedDict()
p['train_dataset'] = self.args.train_dataset
p['lr'] = self.args.lr
p['epoch'] = self.args.epochs
for key, val in p.items():
log_file.write(key + ':' + str(val) + '\n')
log_file.close()
class Metric(object):
"""Base class for all metrics.
From: https://github.com/pytorch/tnt/blob/master/torchnet/meter/meter.py
"""
def reset(self):
pass
def add(self):
pass
def value(self):
pass
class ConfusionMatrix(Metric):
"""Constructs a confusion matrix for a multi-class classification problems.
Does not support multi-label, multi-class problems.
Keyword arguments:
- num_classes (int): number of classes in the classification problem.
- normalized (boolean, optional): Determines whether or not the confusion
matrix is normalized or not. Default: False.
Modified from: https://github.com/pytorch/tnt/blob/master/torchnet/meter/confusionmeter.py
"""
def __init__(self, num_classes, normalized=False):
super().__init__()
self.conf = np.ndarray((num_classes, num_classes), dtype=np.int32)
self.normalized = normalized
self.num_classes = num_classes
self.reset()
def reset(self):
self.conf.fill(0)
def add(self, predicted, target):
"""Computes the confusion matrix
The shape of the confusion matrix is K x K, where K is the number
of classes.
Keyword arguments:
- predicted (Tensor or numpy.ndarray): Can be an N x K tensor/array of
predicted scores obtained from the model for N examples and K classes,
or an N-tensor/array of integer values between 0 and K-1.
- target (Tensor or numpy.ndarray): Can be an N x K tensor/array of
ground-truth classes for N examples and K classes, or an N-tensor/array
of integer values between 0 and K-1.
"""
# If target and/or predicted are tensors, convert them to numpy arrays
if torch.is_tensor(predicted):
predicted = predicted.cpu().numpy()
if torch.is_tensor(target):
target = target.cpu().numpy()
assert predicted.shape[0] == target.shape[0], \
'number of targets and predicted outputs do not match'
if np.ndim(predicted) != 1:
assert predicted.shape[1] == self.num_classes, \
'number of predictions does not match size of confusion matrix'
predicted = np.argmax(predicted, 1)
else:
assert (predicted.max() < self.num_classes) and (predicted.min() >= 0), \
'predicted values are not between 0 and k-1'
if np.ndim(target) != 1:
assert target.shape[1] == self.num_classes, \
'Onehot target does not match size of confusion matrix'
assert (target >= 0).all() and (target <= 1).all(), \
'in one-hot encoding, target values should be 0 or 1'
assert (target.sum(1) == 1).all(), \
'multi-label setting is not supported'
target = np.argmax(target, 1)
else:
assert (target.max() < self.num_classes) and (target.min() >= 0), \
'target values are not between 0 and k-1'
# hack for bincounting 2 arrays together
x = predicted + self.num_classes * target
bincount_2d = np.bincount(
x.astype(np.int32), minlength=self.num_classes**2)
assert bincount_2d.size == self.num_classes**2
conf = bincount_2d.reshape((self.num_classes, self.num_classes))
self.conf += conf
def value(self):
"""
Returns:
Confustion matrix of K rows and K columns, where rows corresponds
to ground-truth targets and columns corresponds to predicted
targets.
"""
if self.normalized:
conf = self.conf.astype(np.float32)
return conf / conf.sum(1).clip(min=1e-12)[:, None]
else:
return self.conf
def vec2im(V, shape=()):
'''
Transform an array V into a specified shape - or if no shape is given assume a square output format.
Parameters
----------
V : numpy.ndarray
an array either representing a matrix or vector to be reshaped into an two-dimensional image
shape : tuple or list
optional. containing the shape information for the output array if not given, the output is assumed to be square
Returns
-------
W : numpy.ndarray
with W.shape = shape or W.shape = [np.sqrt(V.size)]*2
'''
if len(shape) < 2:
shape = [np.sqrt(V.size)] * 2
shape = map(int, shape)
return np.reshape(V, shape)
def enlarge_image(img, scaling=3):
'''
Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction.
Parameters
----------
img : numpy.ndarray
array of shape [H x W] OR [H x W x D]
scaling : int
positive integer value > 0
Returns
-------
out : numpy.ndarray
two-dimensional array of shape [scaling*H x scaling*W]
OR
three-dimensional array of shape [scaling*H x scaling*W x D]
depending on the dimensionality of the input
'''
if scaling < 1 or not isinstance(scaling, int):
print('scaling factor needs to be an int >= 1')
if len(img.shape) == 2:
H, W = img.shape
out = np.zeros((scaling * H, scaling * W))
for h in range(H):
fh = scaling * h
for w in range(W):
fw = scaling * w
out[fh:fh + scaling, fw:fw + scaling] = img[h, w]
elif len(img.shape) == 3:
H, W, D = img.shape
out = np.zeros((scaling * H, scaling * W, D))
for h in range(H):
fh = scaling * h
for w in range(W):
fw = scaling * w
out[fh:fh + scaling, fw:fw + scaling, :] = img[h, w, :]
return out
def repaint_corner_pixels(rgbimg, scaling=3):
'''
DEPRECATED/OBSOLETE.
Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups).
The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling.
Assumes those image ares will pretty much never show evidence.
Parameters
----------
rgbimg : numpy.ndarray
array of shape [H x W x 3]
scaling : int
positive integer value > 0
Returns
-------
rgbimg : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3]
'''
# top left corner.
rgbimg[0:scaling, 0:scaling, :] = (rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling,
:]) / 3.0
# bottom right corner
rgbimg[-scaling:, -scaling:, :] = (rgbimg[-1, -1 - scaling, :] + rgbimg[-1 - scaling, -1, :] + rgbimg[-1 - scaling,
-1 - scaling,
:]) / 3.0
return rgbimg
def digit_to_rgb(X, scaling=3, shape=(), cmap='binary'):
'''
Takes as input an intensity array and produces a rgb image due to some color map
Parameters
----------
X : numpy.ndarray
intensity matrix as array of shape [M x N]
scaling : int
optional. positive integer value > 0
shape: tuple or list of its , length = 2
optional. if not given, X is reshaped to be square.
cmap : str
name of color map of choice. default is 'binary'
Returns
-------
image : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
'''
# create color map object from name string
cmap = eval('matplotlib.cm.{}'.format(cmap))
image = enlarge_image(vec2im(X, shape), scaling) # enlarge
image = cmap(image.flatten())[..., 0:3].reshape([image.shape[0], image.shape[1], 3]) # colorize, reshape
return image
def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap='bwr', normalize=True):
'''
Takes as input an intensity array and produces a rgb image for the represented heatmap.
optionally draws the outline of another input on top of it.
Parameters
----------
R : numpy.ndarray
the heatmap to be visualized, shaped [M x N]
X : numpy.ndarray
optional. some input, usually the data point for which the heatmap R is for, which shall serve
as a template for a black outline to be drawn on top of the image
shaped [M x N]
scaling: int
factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness)
after reshaping it using shape.
shape: tuple or list, length = 2
optional. if not given, X is reshaped to be square.
sigma : double
optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines.
cmap : str
optional. color map of choice
normalize : bool
optional. whether to normalize the heatmap to [-1 1] prior to colorization or not.
Returns
-------
rgbimg : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
'''
# create color map object from name string
cmap = eval('matplotlib.cm.{}'.format(cmap))
if normalize:
R = R / np.max(np.abs(R)) # normalize to [-1,1] wrt to max relevance magnitude
R = (R + 1.) / 2. # shift/normalize to [0,1] for color mapping
R = enlarge_image(R, scaling)
rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3])
# rgb = repaint_corner_pixels(rgb, scaling) #obsolete due to directly calling the color map with [0,1]-normalized inputs
if not X is None: # compute the outline of the input
# X = enlarge_image(vec2im(X,shape), scaling)
xdims = X.shape
Rdims = R.shape
return rgb
def save_image(rgb_images, path, gap=2):
'''
Takes as input a list of rgb images, places them next to each other with a gap and writes out the result.
Parameters
----------
rgb_images : list , tuple, collection. such stuff
each item in the collection is expected to be an rgb image of dimensions [H x _ x 3]
where the width is variable
path : str
the output path of the assembled image
gap : int
optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images
Returns
-------
image : numpy.ndarray
the assembled image as written out to path
'''
sz = []
image = []
for i in range(len(rgb_images)):
if not sz:
sz = rgb_images[i].shape
image = rgb_images[i]
gap = np.zeros((sz[0], gap, sz[2]))
continue
if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]:
print('image', i, 'differs in size. unable to perform horizontal alignment')
print('expected: Hx_xD = {0}x_x{1}'.format(sz[0], sz[1]))
print('got : Hx_xD = {0}x_x{1}'.format(rgb_images[i].shape[0], rgb_images[i].shape[1]))
print('skipping image\n')
else:
image = np.hstack((image, gap, rgb_images[i]))
image *= 255
image = image.astype(np.uint8)
print('saving image to ', path)
skimage.io.imsave(path, image)
return image
class IoU(Metric):
"""Computes the intersection over union (IoU) per class and corresponding
mean (mIoU).
Intersection over union (IoU) is a common evaluation metric for semantic
segmentation. The predictions are first accumulated in a confusion matrix
and the IoU is computed from it as follows:
IoU = true_positive / (true_positive + false_positive + false_negative).
Keyword arguments:
- num_classes (int): number of classes in the classification problem
- normalized (boolean, optional): Determines whether or not the confusion
matrix is normalized or not. Default: False.
- ignore_index (int or iterable, optional): Index of the classes to ignore
when computing the IoU. Can be an int, or any iterable of ints.
"""
def __init__(self, num_classes, normalized=False, ignore_index=None):
super().__init__()
self.conf_metric = ConfusionMatrix(num_classes, normalized)
if ignore_index is None:
self.ignore_index = None
elif isinstance(ignore_index, int):
self.ignore_index = (ignore_index,)
else:
try:
self.ignore_index = tuple(ignore_index)
except TypeError:
raise ValueError("'ignore_index' must be an int or iterable")
def reset(self):
self.conf_metric.reset()
def add(self, predicted, target):
"""Adds the predicted and target pair to the IoU metric.
Keyword arguments:
- predicted (Tensor): Can be a (N, K, H, W) tensor of
predicted scores obtained from the model for N examples and K classes,
or (N, H, W) tensor of integer values between 0 and K-1.
- target (Tensor): Can be a (N, K, H, W) tensor of
target scores for N examples and K classes, or (N, H, W) tensor of
integer values between 0 and K-1.
"""
# Dimensions check
assert predicted.size(0) == target.size(0), \
'number of targets and predicted outputs do not match'
assert predicted.dim() == 3 or predicted.dim() == 4, \
"predictions must be of dimension (N, H, W) or (N, K, H, W)"
assert target.dim() == 3 or target.dim() == 4, \
"targets must be of dimension (N, H, W) or (N, K, H, W)"
# If the tensor is in categorical format convert it to integer format
if predicted.dim() == 4:
_, predicted = predicted.max(1)
if target.dim() == 4:
_, target = target.max(1)
self.conf_metric.add(predicted.view(-1), target.view(-1))
def value(self):
"""Computes the IoU and mean IoU.
The mean computation ignores NaN elements of the IoU array.
Returns:
Tuple: (IoU, mIoU). The first output is the per class IoU,
for K classes it's numpy.ndarray with K elements. The second output,
is the mean IoU.
"""
conf_matrix = self.conf_metric.value()
if self.ignore_index is not None:
for index in self.ignore_index:
conf_matrix[:, self.ignore_index] = 0
conf_matrix[self.ignore_index, :] = 0
true_positive = np.diag(conf_matrix)
false_positive = np.sum(conf_matrix, 0) - true_positive
false_negative = np.sum(conf_matrix, 1) - true_positive
# Just in case we get a division by 0, ignore/hide the error
with np.errstate(divide='ignore', invalid='ignore'):
iou = true_positive / (true_positive + false_positive + false_negative)
return iou, np.nanmean(iou)
|