wav2vec2-large-mms-1b-twi-colab

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5085
  • Wer: 0.4664

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
7.6457 7.69 100 1.0843 0.8419
0.7832 15.38 200 0.4796 0.5296
0.5053 23.08 300 0.4547 0.4783
0.4083 30.77 400 0.4349 0.4545
0.3281 38.46 500 0.4467 0.4506
0.276 46.15 600 0.4482 0.4427
0.2269 53.85 700 0.4847 0.4664
0.2081 61.54 800 0.4704 0.4150
0.1974 69.23 900 0.5047 0.4506
0.1695 76.92 1000 0.5142 0.4625
0.1642 84.62 1100 0.5028 0.4625
0.159 92.31 1200 0.5085 0.4664
0.1581 100.0 1300 0.5085 0.4664

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huygdng/wav2vec2-large-mms-1b-twi-colab

Finetuned
(185)
this model