Hebrew Intent Classification Model
Model Description
This model is a fine-tuned BERT model for Hebrew intent classification, specifically designed for customer service scenarios. It can classify Hebrew text into 4 different intent categories commonly found in customer support interactions.
Supported Intent Classes
- ביטול מנוי (Cancel Subscription) - Requests to cancel or terminate services
- שאלה כללית (General Question) - General inquiries about services, pricing, or account management
- שכחת סיסמה (Password Reset) - Issues related to forgotten passwords or login problems
- תמיכה טכנית (Technical Support) - Technical issues, bugs, or system problems
Usage
from transformers import pipeline
# Load the model
classifier = pipeline("text-classification", model="Huggingm1r@n/hebrew-intent-classifier")
# Make predictions
result = classifier("שכחתי את הסיסמה שלי")
print(result)
# [{'label': 'שכחת סיסמה', 'score': 0.95}]
# Test other examples
examples = [
"רוצה לבטל את המנוי",
"כמה עולה החבילה",
"האתר לא עובד"
]
for text in examples:
result = classifier(text)
print(f"'{text}' -> {result[0]['label']} ({result[0]['score']:.2%})")
Direct Usage with Transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Huggingm1r@n/hebrew-intent-classifier")
model = AutoModelForSequenceClassification.from_pretrained("Huggingm1r@n/hebrew-intent-classifier")
def predict_intent(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_id = torch.argmax(logits, dim=-1).item()
predicted_label = model.config.id2label[predicted_id]
confidence = probabilities[0][predicted_id].item()
return predicted_label, confidence
# Example
intent, confidence = predict_intent("שכחתי את הסיסמה")
print(f"Intent: {intent}, Confidence: {confidence:.2%}")
Training Details
- Base Model: bert-base-multilingual-cased
- Training Data: 135 Hebrew customer service examples (augmented from 12 original)
- Data Augmentation: Manual variations, formal/informal styles, polite forms
- Performance: >90% accuracy on validation set
Example Predictions
Hebrew Text | Predicted Intent | English Translation |
---|---|---|
שכחתי את הסיסמה שלי | שכחת סיסמה | I forgot my password |
רוצה לבטל את המנוי | ביטול מנוי | Want to cancel subscription |
כמה עולה החבילה | שאלה כללית | How much does the package cost |
האתר לא עובד | תמיכה טכנית | The website doesn't work |
Use Cases
- Customer Service Chatbots: Route Hebrew customer queries automatically
- Support Ticket Classification: Categorize support requests by intent
- Voice of Customer Analysis: Analyze Hebrew customer feedback
- Automated Response Systems: Trigger appropriate responses based on intent
Limitations
- Designed for customer service domain specifically
- Limited to 4 predefined intent classes
- May not work well with very informal Hebrew or slang
- Requires Hebrew text input
Model Files
- Uses
safetensors
format for secure model storage - Compatible with latest Transformers library
- Includes comprehensive tokenizer configuration
Citation
@misc{hebrew-intent-classifier-2025,
title={Hebrew Intent Classification Model for Customer Service},
author={Huggingm1r@n},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/Huggingm1r@n/hebrew-intent-classifier}
}
License
This model is released under the Apache 2.0 License.
- Downloads last month
- 24
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support