huihui-ai's picture
Update README.md
87c945b verified
metadata
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE
pipeline_tag: text-generation
base_model:
  - huihui-ai/Qwen3-14B-abliterated
tags:
  - chat
  - abliterated
  - uncensored
extra_gated_prompt: >-
  **Usage Warnings**


  “**Risk of Sensitive or Controversial Outputs**“: This model’s safety
  filtering has been significantly reduced, potentially generating sensitive,
  controversial, or inappropriate content. Users should exercise caution and
  rigorously review generated outputs.

  “**Not Suitable for All Audiences**:“ Due to limited content filtering, the
  model’s outputs may be inappropriate for public settings, underage users, or
  applications requiring high security.

  “**Legal and Ethical Responsibilities**“: Users must ensure their usage
  complies with local laws and ethical standards. Generated content may carry
  legal or ethical risks, and users are solely responsible for any consequences.

  “**Research and Experimental Use**“: It is recommended to use this model for
  research, testing, or controlled environments, avoiding direct use in
  production or public-facing commercial applications.

  “**Monitoring and Review Recommendations**“: Users are strongly advised to
  monitor model outputs in real-time and conduct manual reviews when necessary
  to prevent the dissemination of inappropriate content.

  “**No Default Safety Guarantees**“: Unlike standard models, this model has not
  undergone rigorous safety optimization. huihui.ai bears no responsibility for
  any consequences arising from its use.

huihui-ai/Qwen3-14B-abliterated-fp4

This is the 4-bit quantized ("bnb_4bit_quant_type": "fp4") model of huihui-ai/Qwen3-14B-abliterated. The config.json contains quantization parameters, so there is no need to add quantization parameters when loading it.

Usage

You can use this model in your applications by loading it with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal

cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)

print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")

# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/Qwen3-14B-abliterated-fp4"
print(f"Load Model {NEW_MODEL_ID} ... ")
model = AutoModelForCausalLM.from_pretrained(
    NEW_MODEL_ID,
    device_map="auto",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id

initial_messages = [{"role": "system", "content": "You are a helpful assistant."}]
messages = initial_messages.copy()
enable_thinking = True
skip_prompt=True
skip_special_tokens=True

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.generated_text = ""
        self.stop_flag = False

    def on_finalized_text(self, text: str, stream_end: bool = False):
        self.generated_text += text
        print(text, end="", flush=True)
        if self.stop_flag:
            raise StopIteration

    def stop_generation(self):
        self.stop_flag = True

def generate_stream(model, tokenizer, messages, enable_thinking, skip_prompt, skip_special_tokens, max_new_tokens):
    input_ids = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        enable_thinking = enable_thinking,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    attention_mask = torch.ones_like(input_ids, dtype=torch.long)
    tokens = input_ids.to(model.device) 
    attention_mask = attention_mask.to(model.device)

    streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)

    def signal_handler(sig, frame):
        streamer.stop_generation()
        print("\n[Generation stopped by user with Ctrl+C]")

    signal.signal(signal.SIGINT, signal_handler)
    
    print("Response: ", end="", flush=True)
    try:
        generated_ids = model.generate(
            tokens,
            attention_mask=attention_mask,
            use_cache=False,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            streamer=streamer
        )
        del generated_ids
    except StopIteration:
        print("\n[Stopped by user]")

    del input_ids, attention_mask
    torch.cuda.empty_cache()
    signal.signal(signal.SIGINT, signal.SIG_DFL)

    return streamer.generated_text, streamer.stop_flag

while True:
    user_input = input("User: ").strip()
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break
    if user_input.lower() == "/clear":
        messages = initial_messages.copy()
        print("Chat history cleared. Starting a new conversation.")
        continue
    if user_input.lower() == "/no_think":
        if enable_thinking:
            enable_thinking = False
            print("Thinking = False.")
        else:
            enable_thinking = True
            print("Thinking = True.")        
        continue
    if user_input.lower() == "/skip_prompt":
        if skip_prompt:
            skip_prompt = False
            print("skip_prompt = False.")
        else:
            skip_prompt = True
            print("skip_prompt = True.")        
        continue
    if user_input.lower() == "/skip_special_tokens":
        if skip_special_tokens:
            skip_special_tokens = False
            print("skip_special_tokens = False.")
        else:
            skip_special_tokens = True
            print("skip_special_tokens = True.")        
        continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue
    messages.append({"role": "user", "content": user_input})
    response, stop_flag = generate_stream(model, tokenizer, messages, enable_thinking, skip_prompt, skip_special_tokens, 8096)
    print("", flush=True)
    if stop_flag:
        continue
    messages.append({"role": "assistant", "content": response})

Donation

If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.

Your donation helps us continue our further development and improvement, a cup of coffee can do it.
  • bitcoin(BTC):
  bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge